PurposeModern photon radiotherapy effectively spares cardiac structures more than previous volumetric approaches. Still, it is related to non-negligible cardiac toxicity due to the low-dose bath of surrounding normal tissues. However, the dosimetric advantages of particle radiotherapy make it a promising treatment for para- and intra-cardiac tumours. In the current short report, we evaluate the cardiac safety profile of carbon ion radiotherapy (CIRT) for radioresistant intra- and para-cardiac malignancies in a real-world setting.MethodsWe retrospectively analysed serum biomarkers (TnI, CRP and NT-proBNP), echocardiographic, and both 12-lead and 24-hour Holter electrocardiogram (ECG) data of consecutive patients with radioresistant intra- and para-cardiac tumours irradiated with CIRT between June 2019 and September 2022. In the CIRT planning optimization process, to minimize the delivered doses, we contoured and gave a high priority to the cardiac substructures. Weekly re-evaluative 4D computed tomography scans were carried out throughout the treatment.ResultsA total of 16 patients with intra- and para-cardiac localizations of radioresistant tumours were treated up to a total dose of 70.4 Gy relative biological effectiveness (RBE) and a mean heart dose of 2.41 Gy(RBE). We did not record any significant variation of the analysed serum biomarkers after CIRT nor significant changes of echocardiographic features, biventricular strain, or 12-lead and 24-hour Holter ECG parameters during 6 months of follow-up.ConclusionOur pilot study suggests that carbon ion radiotherapy is a promising radiation technique capable of sparing off-target side effects at the cardiac level. A larger cohort, long-term follow-up and further prospective studies are needed to confirm these findings.

Pilot study to assess the early cardiac safety of carbon ion radiotherapy for intra- and para-cardiac tumours

Dusi, Veronica;Fontana, Giulia
;
Vai, Alessandro;Greco, Alessandra
2024-01-01

Abstract

PurposeModern photon radiotherapy effectively spares cardiac structures more than previous volumetric approaches. Still, it is related to non-negligible cardiac toxicity due to the low-dose bath of surrounding normal tissues. However, the dosimetric advantages of particle radiotherapy make it a promising treatment for para- and intra-cardiac tumours. In the current short report, we evaluate the cardiac safety profile of carbon ion radiotherapy (CIRT) for radioresistant intra- and para-cardiac malignancies in a real-world setting.MethodsWe retrospectively analysed serum biomarkers (TnI, CRP and NT-proBNP), echocardiographic, and both 12-lead and 24-hour Holter electrocardiogram (ECG) data of consecutive patients with radioresistant intra- and para-cardiac tumours irradiated with CIRT between June 2019 and September 2022. In the CIRT planning optimization process, to minimize the delivered doses, we contoured and gave a high priority to the cardiac substructures. Weekly re-evaluative 4D computed tomography scans were carried out throughout the treatment.ResultsA total of 16 patients with intra- and para-cardiac localizations of radioresistant tumours were treated up to a total dose of 70.4 Gy relative biological effectiveness (RBE) and a mean heart dose of 2.41 Gy(RBE). We did not record any significant variation of the analysed serum biomarkers after CIRT nor significant changes of echocardiographic features, biventricular strain, or 12-lead and 24-hour Holter ECG parameters during 6 months of follow-up.ConclusionOur pilot study suggests that carbon ion radiotherapy is a promising radiation technique capable of sparing off-target side effects at the cardiac level. A larger cohort, long-term follow-up and further prospective studies are needed to confirm these findings.
2024
N/A
N/A
CIRT; Cardiac toxicity; Echocardiographic toxicity features; Radioresistant thoracic tumours; Serum toxicity biomarkers
Barcellini, Amelia; Rordorf, Roberto; Dusi, Veronica; Fontana, Giulia; Pepe, Antonella; Vai, Alessandro; Schirinzi, Sandra; Vitolo, Viviana; Orlandi, ...espandi
File in questo prodotto:
File Dimensione Formato  
s00066-024-02270-2.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 917.22 kB
Formato Adobe PDF
917.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2028120
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact