In recent years, special attention has been paid to the study of manufacturing processes that can precisely control the physicochemical properties of nanoparticles (NPs) and reduce batch-to-batch variability. Microfluidics has recently emerged as an advanced production method that can manage NP properties by monitoring the diffusion/emulsification mechanism. Pentamidine free base (PTM-B), a diamidine compound positively charged at physiological pH, has already been used as a model drug for incorporation into poly(lactic-co-glycolic acid) (PLGA) via an ion-pairing strategy using a conventional bulk production method. The same formulation was chosen to study the scaling-up process and preparation using the microfluidic technique. The formulation of PLGA NP loaded with PTM-B by the microfluidic technique was optimized by adding 1 % Lutrol F68 as a surfactant agent to stabilize the nanosuspension during the solvent diffusion in the microchannel of the chip, and then, washed away in the final suspension. A thorough investigation of process parameters (i.e., total flow rate, f low rate ratio) was conducted to obtain a monodisperse suspension characterized by a mean diameter of less than 150 nm. In addition, in vitro studies on mammalian cancer cell lines demonstrated the potential antitumor activity of PTM-B-loaded NPs prepared by the microfluidic technique.

The manufacturing and characterization of pentamidine-loaded poly(lactic-co-glycolic acid) nanoparticles produced by microfluidic method

Ilaria Andreana
Co-first
;
Barbara Stella
;
Silvia Arpicco;
2024-01-01

Abstract

In recent years, special attention has been paid to the study of manufacturing processes that can precisely control the physicochemical properties of nanoparticles (NPs) and reduce batch-to-batch variability. Microfluidics has recently emerged as an advanced production method that can manage NP properties by monitoring the diffusion/emulsification mechanism. Pentamidine free base (PTM-B), a diamidine compound positively charged at physiological pH, has already been used as a model drug for incorporation into poly(lactic-co-glycolic acid) (PLGA) via an ion-pairing strategy using a conventional bulk production method. The same formulation was chosen to study the scaling-up process and preparation using the microfluidic technique. The formulation of PLGA NP loaded with PTM-B by the microfluidic technique was optimized by adding 1 % Lutrol F68 as a surfactant agent to stabilize the nanosuspension during the solvent diffusion in the microchannel of the chip, and then, washed away in the final suspension. A thorough investigation of process parameters (i.e., total flow rate, f low rate ratio) was conducted to obtain a monodisperse suspension characterized by a mean diameter of less than 150 nm. In addition, in vitro studies on mammalian cancer cell lines demonstrated the potential antitumor activity of PTM-B-loaded NPs prepared by the microfluidic technique.
2024
100
1
9
Microfluidics, emerging technologies, PLGA nanoparticles, pentamidine, drug delivery systems
Ilaria Arduino; Ilaria Andreana; Federica Sommonte; Rosa Maria Iacobazzi; Nunzio Denora; Barbara Stella; Silvia Arpicco; Angela Assunta Lopedota...espandi
File in questo prodotto:
File Dimensione Formato  
JDDST-S-24-03025.pdf

Accesso riservato

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2028315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact