In this work, we extend the formulation of the spatial-based graph convolutional networks with a new architecture, called the graph-informed neural network (GINN). This new architecture is specifically designed for regression tasks on graph-structured data that are not suitable for the well-known graph neural networks, such as the regression of functions with the domain and codomain defined on two sets of values for the vertices of a graph. In particular, we formulate a new graph-informed (GI) layer that exploits the adjacent matrix of a given graph to define the unit connections in the neural network architecture, describing a new convolution operation for inputs associated with the vertices of the graph. We study the new GINN models with respect to two maximum-flow test problems of stochastic flow networks. GINNs show very good regression abilities and interesting potentialities. Moreover, we conclude by describing a real-world application of the GINNs to a flux regression problem in underground networks of fractures.
Graph-Informed Neural Networks for Regressions on Graph-Structured Data
Mastropietro A.;
2022-01-01
Abstract
In this work, we extend the formulation of the spatial-based graph convolutional networks with a new architecture, called the graph-informed neural network (GINN). This new architecture is specifically designed for regression tasks on graph-structured data that are not suitable for the well-known graph neural networks, such as the regression of functions with the domain and codomain defined on two sets of values for the vertices of a graph. In particular, we formulate a new graph-informed (GI) layer that exploits the adjacent matrix of a given graph to define the unit connections in the neural network architecture, describing a new convolution operation for inputs associated with the vertices of the graph. We study the new GINN models with respect to two maximum-flow test problems of stochastic flow networks. GINNs show very good regression abilities and interesting potentialities. Moreover, we conclude by describing a real-world application of the GINNs to a flux regression problem in underground networks of fractures.| File | Dimensione | Formato | |
|---|---|---|---|
|
mathematics-10-00786-v3_MASTROPIETRO_Antonio.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
4.19 MB
Formato
Adobe PDF
|
4.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



