We consider trees with root at infinity endowed with flow measures, which are nondoubling measures of at least exponential growth and which do not satisfy the isoperimetric inequality. In this setting, we develop a Calderón–Zygmund theory and we define BMO and Hardy spaces, proving a number of desired results extending the corresponding theory as known in more classical settings.

Analysis on Trees with Nondoubling Flow Measures

Santagati F.;
2023-01-01

Abstract

We consider trees with root at infinity endowed with flow measures, which are nondoubling measures of at least exponential growth and which do not satisfy the isoperimetric inequality. In this setting, we develop a Calderón–Zygmund theory and we define BMO and Hardy spaces, proving a number of desired results extending the corresponding theory as known in more classical settings.
2023
58
4
731
759
BMO spaces; Calderón–Zygmund theory; Hardy spaces; Nondoubling measure; Trees
Levi M.; Santagati F.; Tabacco A.; Vallarino M.
File in questo prodotto:
File Dimensione Formato  
2318-2028750.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 629.21 kB
Formato Adobe PDF
629.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2028750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact