We consider a homogeneous tree endowed with a nondoubling flow measure μ of exponential growth and a probabilistic Laplacian L self-adjoint with respect to μ. We prove that the maximal characterization in terms of the heat and the Poisson semigroup of L and the Riesz transform characterization of the atomic Hardy space introduced in a previous work fail.

Hardy spaces on homogeneous trees with flow measures

Santagati F.
2022-01-01

Abstract

We consider a homogeneous tree endowed with a nondoubling flow measure μ of exponential growth and a probabilistic Laplacian L self-adjoint with respect to μ. We prove that the maximal characterization in terms of the heat and the Poisson semigroup of L and the Riesz transform characterization of the atomic Hardy space introduced in a previous work fail.
2022
510
2 - Article number 126015
1
23
Hardy spaces; Heat kernel; Maximal function; Nondoubling measure; Trees
Santagati F.
File in questo prodotto:
File Dimensione Formato  
2107.09958v2_SANTAGATI.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 280.84 kB
Formato Adobe PDF
280.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2028753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact