The Periconia fungal genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia are found in many habitats, but little is known about their ecology. Several species from this genus produce bioactive molecules. Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. Furthermore, P. digitata was shown to inhibit the plant pathogenic oomycete Phytophthora parasitica. Because P. digitata has great potential as a biocontrol agent and high quality genomic resources are still lacking in the Periconiaceae family, we generated long-read genomic data for P. digitata. Using PacBio Hifi sequencing technology, we obtained a highly-contiguous genome assembled in 13 chromosomes and totaling ca. 39 Mb. In addition, we produced a reference transcriptome, based on 12 different culture conditions, and proteomic data to support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will contribute to our better understanding of the Eukaryotic tree of life and opens new possibilities in terms of biotechnological applications.

Genome sequence and annotation of Periconia digitata a hopeful biocontrol agent of phytopathogenic oomycetes

Bovio E.;
2023-01-01

Abstract

The Periconia fungal genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia are found in many habitats, but little is known about their ecology. Several species from this genus produce bioactive molecules. Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. Furthermore, P. digitata was shown to inhibit the plant pathogenic oomycete Phytophthora parasitica. Because P. digitata has great potential as a biocontrol agent and high quality genomic resources are still lacking in the Periconiaceae family, we generated long-read genomic data for P. digitata. Using PacBio Hifi sequencing technology, we obtained a highly-contiguous genome assembled in 13 chromosomes and totaling ca. 39 Mb. In addition, we produced a reference transcriptome, based on 12 different culture conditions, and proteomic data to support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will contribute to our better understanding of the Eukaryotic tree of life and opens new possibilities in terms of biotechnological applications.
2023
Inglese
Esperti anonimi
10
1
1
15
15
FRANCIA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
10
Bovio E.; Rancurel C.; Seassau A.; Magliano M.; Gislard M.; Loisier A.; Kuchly C.; Ponchet M.; Danchin E.G.J.; Van Ghelder C.
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
41597_2023_Article_2440_BOVIO_Elena.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2029659
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact