Jackiw–Teitelboim dilaton quantum gravity localizes on a double-scaled random-matrix model, whose perturbative free energy is an asymptotic series. Understanding the resurgent properties of this asymptotic series, including its completion into a full transseries, requires understanding the nonperturbative instanton sectors of the matrix model for Jackiw–Teitelboim gravity. The present work addresses this question by setting-up instanton calculus associated with eigenvalue tunneling (or ZZ-brane contributions), directly in the matrix model. In order to systematize such calculations, a nonperturbative extension of the topological recursion formalism is required—which is herein both constructed and applied to the present problem. Large-order tests of the perturbative genus expansion validate the resurgent nature of Jackiw–Teitelboim gravity, both for its free energy and for its (multi-resolvent) correlation functions. Both ZZ and FZZT nonperturbative effects are required by resurgence, and they further display resonance upon the Borel plane. Finally, the resurgence properties of the multi-resolvent correlation functions yield new and improved resurgence formulae for the large-genus growth of Weil–Petersson volumes.

Resurgent Asymptotics of Jackiw–Teitelboim Gravity and the Nonperturbative Topological Recursion

Gregori P.;
2024-01-01

Abstract

Jackiw–Teitelboim dilaton quantum gravity localizes on a double-scaled random-matrix model, whose perturbative free energy is an asymptotic series. Understanding the resurgent properties of this asymptotic series, including its completion into a full transseries, requires understanding the nonperturbative instanton sectors of the matrix model for Jackiw–Teitelboim gravity. The present work addresses this question by setting-up instanton calculus associated with eigenvalue tunneling (or ZZ-brane contributions), directly in the matrix model. In order to systematize such calculations, a nonperturbative extension of the topological recursion formalism is required—which is herein both constructed and applied to the present problem. Large-order tests of the perturbative genus expansion validate the resurgent nature of Jackiw–Teitelboim gravity, both for its free energy and for its (multi-resolvent) correlation functions. Both ZZ and FZZT nonperturbative effects are required by resurgence, and they further display resonance upon the Borel plane. Finally, the resurgence properties of the multi-resolvent correlation functions yield new and improved resurgence formulae for the large-genus growth of Weil–Petersson volumes.
2024
25
9
4121
4193
https://link.springer.com/content/pdf/10.1007/s00023-023-01412-z.pdf
Eynard B.; Garcia-Failde E.; Gregori P.; Lewanski D.; Schiappa R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2030512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact