Depression is a common and very important health issue with serious effects in the daily life of people. Recently, several researchers have explored the analysis of user-generated data in social media to detect and diagnose signs of this mental disorder in individuals. In this regard, we tackled the depression detection task in social media considering the idea that terms located in phrases exposing personal statements (i.e., phrases characterized by the use of singular first person pronouns) have a special value for revealing signs of depression. First, we assessed the value of the personal statements for depression detection in social media. Second, we adapted an automatic approach that emphasizes the personal statements by means of a feature selection method and a term weighting scheme. Finally, we addressed the task in hand as an early detection problem, where the aim is to detect traces of depression with as much anticipation as possible. For evaluating these ideas, benchmark Reddit data for depression detection was used. The obtained results indicate that the personal statements have high relevance for revealing traces of depression. Furthermore, the results on early scenarios demonstrated that the proposed approach achieves high competitiveness compared with state-of-the-art methods, while maintaining its simplicity and interpretability.

Revealing traces of depression through personal statements analysis in social media

Hernandez Farias, Delia Irazú;
2022-01-01

Abstract

Depression is a common and very important health issue with serious effects in the daily life of people. Recently, several researchers have explored the analysis of user-generated data in social media to detect and diagnose signs of this mental disorder in individuals. In this regard, we tackled the depression detection task in social media considering the idea that terms located in phrases exposing personal statements (i.e., phrases characterized by the use of singular first person pronouns) have a special value for revealing signs of depression. First, we assessed the value of the personal statements for depression detection in social media. Second, we adapted an automatic approach that emphasizes the personal statements by means of a feature selection method and a term weighting scheme. Finally, we addressed the task in hand as an early detection problem, where the aim is to detect traces of depression with as much anticipation as possible. For evaluating these ideas, benchmark Reddit data for depression detection was used. The obtained results indicate that the personal statements have high relevance for revealing traces of depression. Furthermore, the results on early scenarios demonstrated that the proposed approach achieves high competitiveness compared with state-of-the-art methods, while maintaining its simplicity and interpretability.
2022
123
1
11
DPP-EXPEI; Depression detection; Personal information; Personal pronouns
Ortega-Mendoza, Rosa María; Hernandez Farias, Delia Irazú; Montes-y-Gómez, Manuel; Villaseñor-Pineda, Luis
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0933365721001950-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2030514
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 16
social impact