As an important group of widespread organic substances in aquatic ecosystems, dissolved organic matter (DOM) plays an essential role in carbon recycling and transformation processes. The photochemical behavior of DOM is one of the main ways it participates in these processes, and it attracts extensive attention. However, due to a variety of sources and water conditions, including both freshwater and seawater environments, the photochemical properties of DOM exhibit great differences. Nowadays, a large number of studies have focused on the generation process of reactive species (RS) from sunlit DOM, while little effort has been made so far to provide a comprehensive summary of the photochemical behavior of DOM, especially in fresh and saline aquatic ecosystems. In this review, we analyzed the research hotspot on DOM photochemistry over the last 30 years, summarizing the generation of photoreactive species in natural water environments containing DOM (both freshwater and seawater) and listing the main factors affecting the rate, yield, and species of RS photoproduction. Compared with freshwater, seawater has unique characteristics such as high pH value, high ionic strength, and halide ions, which affect the photogeneration of RS, the photoconversion process, as well as the reaction pathways of various environmental substances. In general, DOM-induced surface water photochemistry has important impacts on the environmental transformation and toxic effects of aquatic pollutants and can even contribute significantly to the Earth’s carbon cycle, which would have potential implications for both human and ecological health.

Photochemical behavior of dissolved organic matter in environmental surface waters: A review

Vione D.;
2024-01-01

Abstract

As an important group of widespread organic substances in aquatic ecosystems, dissolved organic matter (DOM) plays an essential role in carbon recycling and transformation processes. The photochemical behavior of DOM is one of the main ways it participates in these processes, and it attracts extensive attention. However, due to a variety of sources and water conditions, including both freshwater and seawater environments, the photochemical properties of DOM exhibit great differences. Nowadays, a large number of studies have focused on the generation process of reactive species (RS) from sunlit DOM, while little effort has been made so far to provide a comprehensive summary of the photochemical behavior of DOM, especially in fresh and saline aquatic ecosystems. In this review, we analyzed the research hotspot on DOM photochemistry over the last 30 years, summarizing the generation of photoreactive species in natural water environments containing DOM (both freshwater and seawater) and listing the main factors affecting the rate, yield, and species of RS photoproduction. Compared with freshwater, seawater has unique characteristics such as high pH value, high ionic strength, and halide ions, which affect the photogeneration of RS, the photoconversion process, as well as the reaction pathways of various environmental substances. In general, DOM-induced surface water photochemistry has important impacts on the environmental transformation and toxic effects of aquatic pollutants and can even contribute significantly to the Earth’s carbon cycle, which would have potential implications for both human and ecological health.
2024
Inglese
Esperti anonimi
3
4
529
542
14
https://www.sciencedirect.com/science/article/pii/S2772985024000516
Dissolved organic matter Photochemistry Reactive species Surface waters Ecological impact
REPUBBLICA POPOLARE CINESE
   GRINS - Growing Resilient, INclusive and Sustainable - PNRR M4C2 Investimento 1.3 Avviso 341/2022
   GRINS
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   PE00000018
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
9
03-CONTRIBUTO IN RIVISTA::03B-Review in Rivista / Rassegna della Lett. in Riv. / Nota Critica
open
262
info:eu-repo/semantics/article
Xu Y.; Zhang Y.; Qiu L.; Zhang M.; Yang J.; Ji R.; Vione D.; Chen Z.; Gu C.
File in questo prodotto:
File Dimensione Formato  
EcoEnvHealth2024_DOM.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2030639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact