We deduce continuity and (global) wave-front properties of classes of Fourier multipliers, pseudo-differential, and Fourier integral operators when acting on Orlicz spaces, or more generally, on Orlicz-Sobolev type spaces. In particular, we extend H & ouml;rmander's improvement of Mihlin's Fourier multiplier theorem to the framework of Orlicz spaces. We also show how Young functions Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} of the Orlicz spaces are linked to properties of certain Lebesgue exponents p Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\Phi $$\end{document} and q Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_\Phi $$\end{document} emerged from Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}.
Fourier Type Operators on Orlicz Spaces and the Role of Orlicz Lebesgue Exponents
Bonino M.;Coriasco S.
;
2024-01-01
Abstract
We deduce continuity and (global) wave-front properties of classes of Fourier multipliers, pseudo-differential, and Fourier integral operators when acting on Orlicz spaces, or more generally, on Orlicz-Sobolev type spaces. In particular, we extend H & ouml;rmander's improvement of Mihlin's Fourier multiplier theorem to the framework of Orlicz spaces. We also show how Young functions Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} of the Orlicz spaces are linked to properties of certain Lebesgue exponents p Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\Phi $$\end{document} and q Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_\Phi $$\end{document} emerged from Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}.| File | Dimensione | Formato | |
|---|---|---|---|
|
BCPT_Psidos&FIOsOrliczSpcs.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
502.23 kB
Formato
Adobe PDF
|
502.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



