We deduce continuity and (global) wave-front properties of classes of Fourier multipliers, pseudo-differential, and Fourier integral operators when acting on Orlicz spaces, or more generally, on Orlicz-Sobolev type spaces. In particular, we extend H & ouml;rmander's improvement of Mihlin's Fourier multiplier theorem to the framework of Orlicz spaces. We also show how Young functions Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} of the Orlicz spaces are linked to properties of certain Lebesgue exponents p Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\Phi $$\end{document} and q Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_\Phi $$\end{document} emerged from Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}.

Fourier Type Operators on Orlicz Spaces and the Role of Orlicz Lebesgue Exponents

Bonino M.;Coriasco S.
;
2024-01-01

Abstract

We deduce continuity and (global) wave-front properties of classes of Fourier multipliers, pseudo-differential, and Fourier integral operators when acting on Orlicz spaces, or more generally, on Orlicz-Sobolev type spaces. In particular, we extend H & ouml;rmander's improvement of Mihlin's Fourier multiplier theorem to the framework of Orlicz spaces. We also show how Young functions Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} of the Orlicz spaces are linked to properties of certain Lebesgue exponents p Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\Phi $$\end{document} and q Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_\Phi $$\end{document} emerged from Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}.
2024
21
8
1
24
https://link.springer.com/article/10.1007/s00009-024-02735-9
Orlicz; Quasi-Banach; Quasi-Young functionals
Bonino M.; Coriasco S.; Petersson A.; Toft J.
File in questo prodotto:
File Dimensione Formato  
BCPT_Psidos&FIOsOrliczSpcs.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 502.23 kB
Formato Adobe PDF
502.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2032790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact