The cementitious properties of natural Mg-rich olivine when reacted with a phosphoric acid solution are investigated, as a function of acid concentration and liquid/solid mass ratio. The obtained cements are composed of residual olivine crystals and amorphous silica nanoparticles dispersed in a dense and compact newberyite (MgHPO4∙3H2O) matrix. The latter was mostly formed by packed micrometric tabular crystals, although evidence of the presence of a fraction of amorphous MgHPO4 was also found. Water content in the raw mix was observed to play a pivotal role on the reaction pathway, either promoting porosity or hindering the crystallization of the products. Up to 57 % of olivine reactivity, whose dissolution was promoted by the curing temperature (60 °C) and low pH, was achieved. All in all, these results indicate that the industrial mineral olivine may serve a viable source of Mg for the production of phosphate cements.

Setting reaction of a olivine-based Mg-phosphate cement

Bernasconi, Davide
;
Bordignon, Simone;Celikutku, Cem;Borfecchia, Elisa;Wehrung, Quentin;Gobetto, Roberto;Pavese, Alessandro
2024-01-01

Abstract

The cementitious properties of natural Mg-rich olivine when reacted with a phosphoric acid solution are investigated, as a function of acid concentration and liquid/solid mass ratio. The obtained cements are composed of residual olivine crystals and amorphous silica nanoparticles dispersed in a dense and compact newberyite (MgHPO4∙3H2O) matrix. The latter was mostly formed by packed micrometric tabular crystals, although evidence of the presence of a fraction of amorphous MgHPO4 was also found. Water content in the raw mix was observed to play a pivotal role on the reaction pathway, either promoting porosity or hindering the crystallization of the products. Up to 57 % of olivine reactivity, whose dissolution was promoted by the curing temperature (60 °C) and low pH, was achieved. All in all, these results indicate that the industrial mineral olivine may serve a viable source of Mg for the production of phosphate cements.
2024
186
107694
107711
Alternative binders; Magnesium cement; Olivine; Phosphate cement
Bernasconi, Davide; Viani, Alberto; Zárybnická, Lucie; Bordignon, Simone; Godinho, Jose R.A.; Maximenko, Alexey; Celikutku, Cem; Jafri, Sadaf Fatima; ...espandi
File in questo prodotto:
File Dimensione Formato  
Paper-final.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 11.53 MB
Formato Adobe PDF
11.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2035092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact