Single-photon detectors have gained significant attention recently, driven by advancements in quantum information technology. Applications such as quantum key distribution, quantum cryptography, and quantum computation demand the ability to detect individual quanta of light and distinguish between single-photon states and multi-photon states, particularly when operating within waveguide systems. Although single-photon detector fabrication has been established for some time, integrating detectors with waveguides using new materials with suitable structural and electronic properties, especially at telecommunication wavelengths, creates more compact source-line-detector systems. This review explores the state of the art of single-photon detector research and examines the potential breakthroughs offered by novel low-dimensional materials in this field.
Single-Photon Detectors for Quantum Integrated Photonics
Andrini, Greta;Campostrini, Matteo;Demontis, Valeria;Ditalia Tchernij, Sviatoslav;Forneris, Jacopo;Nieto Hernandez, Elena;
2024-01-01
Abstract
Single-photon detectors have gained significant attention recently, driven by advancements in quantum information technology. Applications such as quantum key distribution, quantum cryptography, and quantum computation demand the ability to detect individual quanta of light and distinguish between single-photon states and multi-photon states, particularly when operating within waveguide systems. Although single-photon detector fabrication has been established for some time, integrating detectors with waveguides using new materials with suitable structural and electronic properties, especially at telecommunication wavelengths, creates more compact source-line-detector systems. This review explores the state of the art of single-photon detector research and examines the potential breakthroughs offered by novel low-dimensional materials in this field.File | Dimensione | Formato | |
---|---|---|---|
photonics-12-00008-v2.pdf
Accesso aperto
Descrizione: Manuscripy
Tipo di file:
PDF EDITORIALE
Dimensione
8.58 MB
Formato
Adobe PDF
|
8.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.