We study Brezis-Nirenberg type problems, governed by the double phase operator −div(|∇u|p−2∇u+a(x)|∇u|q−2∇u), that involve a critical nonlinearity of the form |u|^{p(x)−2}u+b(x)|u|^{q(x)−2}u. Both for the local case and for related nonlocal Kirchhoff type problems, we prove new compactness and existence results using variational methods in suitable Musielak-Orlicz Sobolev spaces. For these functional spaces, we prove some continuous and compact embeddings that are of independent interest. The study of the local problem is complemented by some nonexistence results of Pohožaev type.

Critical growth double phase problems: The local case and a Kirchhoff type case

Colasuonno, Francesca;
2025-01-01

Abstract

We study Brezis-Nirenberg type problems, governed by the double phase operator −div(|∇u|p−2∇u+a(x)|∇u|q−2∇u), that involve a critical nonlinearity of the form |u|^{p(x)−2}u+b(x)|u|^{q(x)−2}u. Both for the local case and for related nonlocal Kirchhoff type problems, we prove new compactness and existence results using variational methods in suitable Musielak-Orlicz Sobolev spaces. For these functional spaces, we prove some continuous and compact embeddings that are of independent interest. The study of the local problem is complemented by some nonexistence results of Pohožaev type.
2025
422
426
488
Brezis-Nirenberg type critical problems; Double phase operator; Musielak-Orlicz Sobolev spaces; Nonlocal Kirchhoff problems; Variational methods
Colasuonno, Francesca; Perera, Kanishka
File in questo prodotto:
File Dimensione Formato  
Colasuonno-Perera_JDE_2025.pdf

Accesso riservato

Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2046270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact