We analyse analytically and numerically the scale-invariant stationary solution to the internal-wave kinetic equation. Our analysis of the resonant energy transfers shows that the leading-order contributions are given (i) by triads with extreme scale separation and (ii) by triads of waves that are quasi-collinear in the horizontal plane. The contributions from other types of triads is found to be subleading. We use the modified scale-invariant limit of the Garrett and Munk spectrum of internal waves to calculate the magnitude of the energy flux towards high wavenumbers in both the vertical and the horizontal directions. Our results compare favourably with the finescale parametrization of ocean mixing that was proposed in Polzin et al. (J. Phys. Oceanogr., vol. 25, issue 3, 1995, pp. 306-328).

Downscale energy fluxes in scale-invariant oceanic internal wave turbulence

Dematteis, Giovanni;
2021-01-01

Abstract

We analyse analytically and numerically the scale-invariant stationary solution to the internal-wave kinetic equation. Our analysis of the resonant energy transfers shows that the leading-order contributions are given (i) by triads with extreme scale separation and (ii) by triads of waves that are quasi-collinear in the horizontal plane. The contributions from other types of triads is found to be subleading. We use the modified scale-invariant limit of the Garrett and Munk spectrum of internal waves to calculate the magnitude of the energy flux towards high wavenumbers in both the vertical and the horizontal directions. Our results compare favourably with the finescale parametrization of ocean mixing that was proposed in Polzin et al. (J. Phys. Oceanogr., vol. 25, issue 3, 1995, pp. 306-328).
2021
915
A129
1
22
internal waves; ocean processes; wave-turbulence interactions
Dematteis, Giovanni; Lvov, Yuri V.
File in questo prodotto:
File Dimensione Formato  
downscale-energy-fluxes-in-scale-invariant-oceanic-internal-wave-turbulence.pdf

Accesso aperto

Descrizione: pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2047094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact