Solving Fredholm equations of the first kind is crucial in many areas of the applied sciences. In this work we consider integral equations featuring kernels which may be expressed as scalar multiples of conservative (i.e. Markov) kernels and we adopt a variational point of view by considering a minimization problem in the space of probability measures with an entropic regularization. Contrary to classical approaches which discretize the domain of the solutions, we introduce an algorithm to asymptotically sample from the unique solution of the regularized minimization problem. As a result our estimators do not depend on any underlying grid and have better scalability properties than most existing methods. Our algorithm is based on a particle approximation of the solution of a McKean–Vlasov stochastic differential equation associated with the Wasserstein gradient flow of our variational formulation. We prove the convergence towards a minimizer and provide practical guidelines for its numerical implementation. Finally, our method is compared with other approaches on several examples including density deconvolution and epidemiology.

Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows

Crucinio F. R.
First
;
2024-01-01

Abstract

Solving Fredholm equations of the first kind is crucial in many areas of the applied sciences. In this work we consider integral equations featuring kernels which may be expressed as scalar multiples of conservative (i.e. Markov) kernels and we adopt a variational point of view by considering a minimization problem in the space of probability measures with an entropic regularization. Contrary to classical approaches which discretize the domain of the solutions, we introduce an algorithm to asymptotically sample from the unique solution of the regularized minimization problem. As a result our estimators do not depend on any underlying grid and have better scalability properties than most existing methods. Our algorithm is based on a particle approximation of the solution of a McKean–Vlasov stochastic differential equation associated with the Wasserstein gradient flow of our variational formulation. We prove the convergence towards a minimizer and provide practical guidelines for its numerical implementation. Finally, our method is compared with other approaches on several examples including density deconvolution and epidemiology.
2024
173
104374
104374
https://www.sciencedirect.com/science/article/pii/S0304414924000802?via=ihub
Interacting particle systems; Inverse problems; McKean–Vlasov SDEs
Crucinio F.R.; De Bortoli V.; Doucet A.; Johansen A.M.
File in questo prodotto:
File Dimensione Formato  
Crucinio_DeBortoli_Doucet_Johansen_Solving2024.pdf

Accesso aperto

Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2047611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact