In this paper we investigate the well-posedness of the Cauchy problem for a Schrödinger operator with singular lower order terms. We allow distributional coefficients and we approach this problem via the regularising methods at the core of the theory of very weak solutions. We prove that a very weak solution exists and it is unique modulo negligible perturbations. Very weak solutions converge to classical solutions when the equation coefficients are regular enough.

Schrödinger type equations with singular coefficients and lower order terms

Marco Cappiello;
2025-01-01

Abstract

In this paper we investigate the well-posedness of the Cauchy problem for a Schrödinger operator with singular lower order terms. We allow distributional coefficients and we approach this problem via the regularising methods at the core of the theory of very weak solutions. We prove that a very weak solution exists and it is unique modulo negligible perturbations. Very weak solutions converge to classical solutions when the equation coefficients are regular enough.
2025
425
190
222
https://pdf.sciencedirectassets.com/272398/1-s2.0-S0022039625X00036/1-s2.0-S0022039625000130/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJb//////////wEaCXVzLWVhc3QtMSJIMEYCIQDbLtMHZSXAzaEMiOTWxsSHQWimTQGoANhIhT4+ZSDvNAIhAItzEnPoHsxGCoK9eEUWE/xJNA21t7NsTpw7YOUIDOIcKrwFCI///////////wEQBRoMMDU5MDAzNTQ2ODY1IgysBQ7LMDHZ4wHp7DsqkAWGhQWIK3wPq1W84NtCtyGjTFjFOhbVT7OQegNbS8gLW1lSYYb+xxoD4rNF+UYCHa+sQI+JXuvdqCO4TJt7Ri5XlLVvP6BMDs0HyHOs1BgktlHQzb5BIqBpRKwXI5e0g37Z8AZZzX6Acrw/cyeAUq1XsqLxD6yhEXHo7o1dox7jI23kuZ5LD0K49akBnu1a3HNfSfeUqq/2l1tAUUXk465SkdgUD/RUuKhUZ8G8PSPu//5KTnjt+MjA0bew8cnppHYD6eyQm6f/I8vGa5E9GzNgq2TscKJRJ45NDaT2c7Jx5/8vnASZ/GrZyQ8ZN9Pco/mKzh/bnUvkuEiQz+yQCk5K4IsJsqmYJzAhya3w+gn+YkYAKDHUegRrTPsMHRqbZkgNK8trNs3CmLMvN3peTNvtMrX+X3L8XWwaCbHaLlAoVycH7quQRL89Xgsjar/fbaqfK1xI2XUDLvSSs04NxYOq6KUkOSvyPiQbMiFz4HuWKXZBNLpXzvkw/sbqJAqPlKr/E8RYIkaFC2lEEEb3bCiIQ9aN+x6UIiEpS3gNBkWsxnQXFo5nb/HkqGsPeRpQhdAnSUrEtIHEHp3s8Dxb4Tv2oPmDOTg9HiVqN4HdzB4t52aj1MevzeJvfp9uljiO6lxmZbpzy/XRIBEfo5fHGn3hh2bOMCPGSCgCDEBykGS69KOJKZjTKOhT0u2ZmwqLOKOr+soCHv4bBZnquNYYXwFXoZc793RWZ+MFqVDHkyYoqybkR96YryuIPScTt/YeRHGoZUNTfDMv5AJcIiYeMT6cJmmks7hPKYDfyXAYy9ifCZ/JdhyNxfaW4mkZG8ANwDVh9prnquphAi/pAqARDnC7WUdh9gu1LZ0iEipWFLkChjCeh7S8BjqwAe337D3jvCNPhm2fCmyTy0rEwNmySxXsHZeYhVWVnxmAMFDvbMx4OgNUgXnyJ4OZbDut1QeJCxgU42vh6MLjm3QDRs3OsLfkaN0EREifA8/0BhVyu7GlyrF8gNxmBYp0UEkRYI+pVyNrxcaiTZmNoNjPDl6yUt5jNCpvCDwyRaGzJu9RIcqTosZLopk+35vkQEPj3ymymA458Fsy5TvRLTXDpvvE6j/AtIPYgSt8WtjY&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250119T140445Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY7I2DBVWB/20250119/us-east-1/s3/aws4_request&X-Amz-Signature=2b243ec7c94e1cfb7c3c1aaa8601fa72edd53cba21dc72dbc28a03f146e83671&hash=d115537055fdd7307d365ff969a5b57ba710c453beb3cb7b9095a445d5c90a1c&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0022039625000130&tid=spdf-09e3df05-fcc3-4f05-951a-7b73c8269f4c&sid=29bccb5a2017544461684d731be4a059d6f2gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=1312585e5455555e505755&rr=904760315ad1ee79&cc=it
Schrödinger operator; Very weak solutions; Regularisation
Alexandre Arias Junior; Alessia Ascanelli; Marco Cappiello; Claudia Garetto
File in questo prodotto:
File Dimensione Formato  
articolopubblicatoJDE.pdf

Accesso aperto

Descrizione: articolo
Tipo di file: PDF EDITORIALE
Dimensione 560.85 kB
Formato Adobe PDF
560.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2048490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact