The development of nanocomposite materials for food packaging applications requires a precise balance of material functionality, safety, and regulatory compliance. In this work, the design, manufacturing, optimization, feasibility, and safety profile of polylactic acid (PLA) nanofibers filled with biocompatible carbon nanoparticles (CNP) and copper-loaded (CNP-Cu) nanoparticles by electrospinning are presented. To ensure nanoparticle compatibility with the PLA solvent system and achieve a uniform dispersion of the nanoparticles within nanofibers, dynamic light scattering analysis was employed, while the incorporation efficiency was demonstrated by building a novel UV–vis spectroscopy analytical method. Morphological analysis, performed through FE-SEM and TEM, confirmed the homogeneous distribution of CNP and CNP-Cu nanoparticles without aggregation. Migration studies in aqueous food simulants were also carried out to assess the material’s safety profile. The results showed minimal nanoparticle release, and the calculated copper migration was well within the limits set by European Commission Regulation (EU) No. 10/2011 for food contact materials.

Carbon Nanoparticle-Loaded PLA Nanofibers via Electrospinning for Food Packaging

Di Matteo, Pietro
First
Membro del Collaboration Group
;
Barbero, Francesco
Membro del Collaboration Group
;
Fenoglio, Ivana
Membro del Collaboration Group
;
Brunella, Valentina
Membro del Collaboration Group
;
2025-01-01

Abstract

The development of nanocomposite materials for food packaging applications requires a precise balance of material functionality, safety, and regulatory compliance. In this work, the design, manufacturing, optimization, feasibility, and safety profile of polylactic acid (PLA) nanofibers filled with biocompatible carbon nanoparticles (CNP) and copper-loaded (CNP-Cu) nanoparticles by electrospinning are presented. To ensure nanoparticle compatibility with the PLA solvent system and achieve a uniform dispersion of the nanoparticles within nanofibers, dynamic light scattering analysis was employed, while the incorporation efficiency was demonstrated by building a novel UV–vis spectroscopy analytical method. Morphological analysis, performed through FE-SEM and TEM, confirmed the homogeneous distribution of CNP and CNP-Cu nanoparticles without aggregation. Migration studies in aqueous food simulants were also carried out to assess the material’s safety profile. The results showed minimal nanoparticle release, and the calculated copper migration was well within the limits set by European Commission Regulation (EU) No. 10/2011 for food contact materials.
2025
9
1
25
41
carbon nanoparticles; copper; electrospinning; food packaging; manufacturing; polylactic acid
Di Matteo, Pietro; Barbero, Francesco; Giménez-Torres, Enrique; Fenoglio, Ivana; Destro, Elena; Brunella, Valentina; Sonseca Olalla, Águeda...espandi
File in questo prodotto:
File Dimensione Formato  
Di Matteo et al. 2025.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 8.91 MB
Formato Adobe PDF
8.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2058410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact