The ultramafic body of Monte Avic (Aosta Valley, Western Alps, Italy) consists of antigorite serpentinite and Ti-clinohumite metadunite. They host late metamorphic veins, up to a couple of centimeters thick, compact, and homogeneous, with a “porcelain” appearance. Vein colors range from yellowish to light greenish, light yellowish fading to white, or rare orange. The veins consist of 15-sector PS-15 polygonal serpentine, with chemical composition Mg2:85 Fe0:08 Si2:05 O7:05 [OH]3:95. Recognition of this unusual phase is supported by diagnostic satellite reflections in the X-ray powder diffraction pattern (e.g., at dobs of 2.502, 2.336, 2.151, and 1.966 Å) TEM images (showing 15-sector polygonal fibers, mostly 200 nm in diameter and a few μm in length, forming a randomly oriented felt) and a μ-Raman wavenumber, matching previous data. This different evidence affords the successful distinction of PS-15 and PS-30, alternatively using TEM images, X-ray powder diffraction, or the low- and high-wavenumber μ-Raman spectra. At Monte Avic, the vein emplacement was accompanied by significant fluid pressure, as suggested by deformation and dismembering of the host rock, with PS-15 grown within isotropic stress microenvironments characterized by fluid-filled voids. Random growth of the mass-fiber polygonal serpentine was favored by low-strain conditions. PS-15 veins formed at the end of the long polyphase Alpine orogenic evolution, with hydrous fluids possibly deriving from serpentinite dehydration in the depth.
Late metamorphic veins with dominant PS-15 polygonal serpentine in the Monte Avic ultramafite
Barale, Luca;Compagnoni, Roberto;Cossio, Roberto;Fiore, Gianluca;Pastero, Linda;
2023-01-01
Abstract
The ultramafic body of Monte Avic (Aosta Valley, Western Alps, Italy) consists of antigorite serpentinite and Ti-clinohumite metadunite. They host late metamorphic veins, up to a couple of centimeters thick, compact, and homogeneous, with a “porcelain” appearance. Vein colors range from yellowish to light greenish, light yellowish fading to white, or rare orange. The veins consist of 15-sector PS-15 polygonal serpentine, with chemical composition Mg2:85 Fe0:08 Si2:05 O7:05 [OH]3:95. Recognition of this unusual phase is supported by diagnostic satellite reflections in the X-ray powder diffraction pattern (e.g., at dobs of 2.502, 2.336, 2.151, and 1.966 Å) TEM images (showing 15-sector polygonal fibers, mostly 200 nm in diameter and a few μm in length, forming a randomly oriented felt) and a μ-Raman wavenumber, matching previous data. This different evidence affords the successful distinction of PS-15 and PS-30, alternatively using TEM images, X-ray powder diffraction, or the low- and high-wavenumber μ-Raman spectra. At Monte Avic, the vein emplacement was accompanied by significant fluid pressure, as suggested by deformation and dismembering of the host rock, with PS-15 grown within isotropic stress microenvironments characterized by fluid-filled voids. Random growth of the mass-fiber polygonal serpentine was favored by low-strain conditions. PS-15 veins formed at the end of the long polyphase Alpine orogenic evolution, with hydrous fluids possibly deriving from serpentinite dehydration in the depth.File | Dimensione | Formato | |
---|---|---|---|
Barale_2023.pdf
Accesso aperto
Dimensione
6.35 MB
Formato
Adobe PDF
|
6.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.