Forests are sensitive to droughts, which increase the mortality rate of tree species. Various processes have been proposed to underlie drought-induced tree mortality, including hydraulic failure, carbon starvation and increased susceptibility to natural enemies. To give insights into these processes, we assessed the metabolic effects of a mortality-inducing drought on seedlings of Pinus sylvestris L. (Scots Pine), a widespread and important Eurasian species. We found divergence over time in the foliar metabolic composition of droughted vs well-watered seedlings, with the former showing increased abundance of aromatic amino acids and decreases in secondary metabolism associated with defence. We observed no significant differences amongst provenances in these effects: seedlings from drought-prone areas showed the same foliar metabolic changes under drought as seedlings from moist environments, although morphological effects of drought varied by provenance. Overall, our results demonstrate how severe drought prior to death may target particular primary and secondary metabolic pathways, weakening defences against natural enemies and contributing to the risk of drought-induced mortality in P. sylvestris.

Drought-induced mortality in Scots pine: Opening the metabolic black box

Dexter K. G.
2019-01-01

Abstract

Forests are sensitive to droughts, which increase the mortality rate of tree species. Various processes have been proposed to underlie drought-induced tree mortality, including hydraulic failure, carbon starvation and increased susceptibility to natural enemies. To give insights into these processes, we assessed the metabolic effects of a mortality-inducing drought on seedlings of Pinus sylvestris L. (Scots Pine), a widespread and important Eurasian species. We found divergence over time in the foliar metabolic composition of droughted vs well-watered seedlings, with the former showing increased abundance of aromatic amino acids and decreases in secondary metabolism associated with defence. We observed no significant differences amongst provenances in these effects: seedlings from drought-prone areas showed the same foliar metabolic changes under drought as seedlings from moist environments, although morphological effects of drought varied by provenance. Overall, our results demonstrate how severe drought prior to death may target particular primary and secondary metabolic pathways, weakening defences against natural enemies and contributing to the risk of drought-induced mortality in P. sylvestris.
2019
39
8
1358
1370
carbon starvation; drought; genotype by environment; hydraulic failure; metabolomics; Pinus sylvestris; plant defence; provenance effects; seedling
MacAllister S.; Mencuccini M.; Sommer U.; Engel J.; Hudson A.; Salmon Y.; Dexter K.G.
File in questo prodotto:
File Dimensione Formato  
McAllister.etal.2019.pdf

Accesso riservato

Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2060513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact