Light-emitting electrochemical cells (LECs) are the simplest and cheapest solid-state lighting technology for soft and/or single-use purposes. However, a major concern is a transition toward eco-friendly devices (emitters/electrolytes/electrodes) to meet green optoelectronic requirements without jeopardizing device performance. In this context, this study shows the first biogenic electrolyte applied to LECs, realizing self-stable and highly performing devices with cellulose-based electrolytes combined with archetypical emitters (conjugated polymers or CPs and ionic transition-metal complexes or iTMCs). In contrast to reference devices with traditional electrolytes, self-stability tests (ambient storage/thermal-stress) show that devices with this bio-electrolyte hold film roughness and photoluminescence quantum yields over time. In addition, charge injection is enhanced due to the high dielectric constant, leading to high efficacies of 15 cd A−1@3750 cd m−2 and 2.5 cd A−1@600 cd m−2 associated with stabilities of 3000/7.5 h and 153/0.7 J for CPs/iTMCs-LECs, respectively. They represent four-/twofold enhancement compared to reference devices. Hence, this novel biogenic electrolyte approach does not reduce device performance as in the prior-art bio-degradable polymer and DNA-hybrid electrolytes, while the easiness of chemical modification provides plenty of room for future developments. All-in-all, this study reinforces the relevance of carbohydrate-based electrolytes not only for energy-related applications, but also for a new field in lighting.

Versatile Biogenic Electrolytes for Highly Performing and Self‐Stable Light‐Emitting Electrochemical Cells

Cavinato, Luca M.
First
;
Fresta, Elisa;
2022-01-01

Abstract

Light-emitting electrochemical cells (LECs) are the simplest and cheapest solid-state lighting technology for soft and/or single-use purposes. However, a major concern is a transition toward eco-friendly devices (emitters/electrolytes/electrodes) to meet green optoelectronic requirements without jeopardizing device performance. In this context, this study shows the first biogenic electrolyte applied to LECs, realizing self-stable and highly performing devices with cellulose-based electrolytes combined with archetypical emitters (conjugated polymers or CPs and ionic transition-metal complexes or iTMCs). In contrast to reference devices with traditional electrolytes, self-stability tests (ambient storage/thermal-stress) show that devices with this bio-electrolyte hold film roughness and photoluminescence quantum yields over time. In addition, charge injection is enhanced due to the high dielectric constant, leading to high efficacies of 15 cd A−1@3750 cd m−2 and 2.5 cd A−1@600 cd m−2 associated with stabilities of 3000/7.5 h and 153/0.7 J for CPs/iTMCs-LECs, respectively. They represent four-/twofold enhancement compared to reference devices. Hence, this novel biogenic electrolyte approach does not reduce device performance as in the prior-art bio-degradable polymer and DNA-hybrid electrolytes, while the easiness of chemical modification provides plenty of room for future developments. All-in-all, this study reinforces the relevance of carbohydrate-based electrolytes not only for energy-related applications, but also for a new field in lighting.
2022
32
29
2201975
2201975
bio-based electrolytes; cellulose; green optoelectronics; ion transporting biopolymer; light-emitting electrochemical cells
Cavinato, Luca M.; Millán, Gonzalo; Fernández‐Cestau, Julio; Fresta, Elisa; Lalinde, Elena; Berenguer, Jesús R.; Costa, Rubén D....espandi
File in questo prodotto:
File Dimensione Formato  
Adv Funct Materials - 2022 - Cavinato - Versatile Biogenic Electrolytes for Highly Performing and Self‐Stable.pdf

Accesso aperto

Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2062490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact