The precipitation of iron at pH > 4 is one of the main drawbacks of any Fenton-based process. Among the engineered solutions, the incorporation of iron within the wide cavities of graphitic carbon nitride (g-CN) has recently gained momentum. However, most works employing Fe-g-CN materials usually employ high H2O2 concentrations (>25 mM) to observe considerable pollutant abatements (without or with UV–vis light irradiation, i.e., by heterogeneous dark- or photo-Fenton processes, respectively). To gain further insights into this issue, in this work, Fe-g-CN, with different amounts of iron, were synthesised by thermal polycondensation of melamine and FeCl3·6H2O as precursors and compared its performance with the g-CN alone. Under UV-A light, a content of 0.2% w/w of iron in the g-CN was optimal to improve the oxidative performances of target pollutants (phenol and sulfamethoxazole 100 μM, respectively), higher Fe-loadings decreased the photocatalytic performances with respect to g-CN. Interestingly, this trend was inversed when adding H2O2 1 mM, being the pollutant removal by g-CN faster than that by Fe-g-CN (for phenol, kobs = 8.02 × 10−2 min−1 and 2.83 × 10−2 min−1, respectively), opposed to expectations. Furthermore, HO•, HO2• or 1O2 were barely detected by Electron Paramagnetic Resonance, indicating that the reactive species should oxidise the g-CN rather than react with the spin traps. Finally, although g-CN oxidation was not observed by typical characterisation techniques (such as FT-IR/ATR), we have observed 6 times more nitrates formation by illuminated Fe-g-CN than g-CN, indicating that iron enhances the self-oxidation of illuminated carbon nitrides. Our results demonstrate that iron incorporation in g-CN might be not as convenient as usually stated in the literature, as the stability of the photocatalyst is drastically reduced, releasing nitrates and possibly decreasing the material's lifetime.
Concerns linked to highly dispersed iron anchored within graphitic carbon nitride, is it a truly promising material to drive heterogeneous photo-Fenton treatments?
Simone PellegrinoFirst
;Ivan Matias Sciscenko
;Fabrizio Caldera;Claudio Minero;Enzo Laurenti;Marco MinellaLast
2025-01-01
Abstract
The precipitation of iron at pH > 4 is one of the main drawbacks of any Fenton-based process. Among the engineered solutions, the incorporation of iron within the wide cavities of graphitic carbon nitride (g-CN) has recently gained momentum. However, most works employing Fe-g-CN materials usually employ high H2O2 concentrations (>25 mM) to observe considerable pollutant abatements (without or with UV–vis light irradiation, i.e., by heterogeneous dark- or photo-Fenton processes, respectively). To gain further insights into this issue, in this work, Fe-g-CN, with different amounts of iron, were synthesised by thermal polycondensation of melamine and FeCl3·6H2O as precursors and compared its performance with the g-CN alone. Under UV-A light, a content of 0.2% w/w of iron in the g-CN was optimal to improve the oxidative performances of target pollutants (phenol and sulfamethoxazole 100 μM, respectively), higher Fe-loadings decreased the photocatalytic performances with respect to g-CN. Interestingly, this trend was inversed when adding H2O2 1 mM, being the pollutant removal by g-CN faster than that by Fe-g-CN (for phenol, kobs = 8.02 × 10−2 min−1 and 2.83 × 10−2 min−1, respectively), opposed to expectations. Furthermore, HO•, HO2• or 1O2 were barely detected by Electron Paramagnetic Resonance, indicating that the reactive species should oxidise the g-CN rather than react with the spin traps. Finally, although g-CN oxidation was not observed by typical characterisation techniques (such as FT-IR/ATR), we have observed 6 times more nitrates formation by illuminated Fe-g-CN than g-CN, indicating that iron enhances the self-oxidation of illuminated carbon nitrides. Our results demonstrate that iron incorporation in g-CN might be not as convenient as usually stated in the literature, as the stability of the photocatalyst is drastically reduced, releasing nitrates and possibly decreasing the material's lifetime.File | Dimensione | Formato | |
---|---|---|---|
Chemosphere_2025_376_144255.pdf
Accesso aperto
Descrizione: Articolo OA
Tipo di file:
PDF EDITORIALE
Dimensione
9.86 MB
Formato
Adobe PDF
|
9.86 MB | Adobe PDF | Visualizza/Apri |
Chemosphere_2025_376_144255_SM.pdf
Accesso aperto
Descrizione: Supplementary Material
Tipo di file:
PDF EDITORIALE
Dimensione
753.56 kB
Formato
Adobe PDF
|
753.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.