Oxysterols (OSs) represent a large family of cholesterol-derived molecules, involved in several physiological and pathological processes. Recently, we reported the remarkable antiviral activity against herpes simplex virus 2 (HSV-2) infection of three cholenamide or homocholenamide derivatives, namely PFM067, PFM064, and PFM069, identified by the screening of an in-house library of OS derivatives. With the aim to shed light on the antiviral mechanism of action of this class of molecules, we assumed to exploit the use of cholenamide-based fluorescent probes. Herein, we report that PFM120 and PFM124, two fluorescent tagged version of PFM067 maintain the same antiviral properties against HSV-2 as the parent compound and localize intracellularly inside the endoplasmic reticulum and the cis-Golgi network. Moreover, we also demonstrate that both tagged molecules co-localize with oxysterol-binding protein (OSBP) and are able to induce its re-localization. Finally, we report that PFM120 and PFM124 are endowed with antiviral activity against another OSBP-dependent viral pathogen, i.e. the human rhinovirus (HRV), different in structure and replication strategy from HSV-2. Taken together, these results candidate PFM120 and PFM124 as useful tools to investigate the actual mechanism of action and molecular target(s) of cholenamide-based antivirals and provide a proof of principle to explore them as a promising broad-spectrum class of antiviral agents.

Cholenamide-based, antiviral fluorescent probes targeting oxysterol-binding protein.

Civra, Andrea
Co-first
;
Costantino, Matteo;Francese, Rachele;Poli, Giuseppe;Lembo, David
Co-last
;
2024-01-01

Abstract

Oxysterols (OSs) represent a large family of cholesterol-derived molecules, involved in several physiological and pathological processes. Recently, we reported the remarkable antiviral activity against herpes simplex virus 2 (HSV-2) infection of three cholenamide or homocholenamide derivatives, namely PFM067, PFM064, and PFM069, identified by the screening of an in-house library of OS derivatives. With the aim to shed light on the antiviral mechanism of action of this class of molecules, we assumed to exploit the use of cholenamide-based fluorescent probes. Herein, we report that PFM120 and PFM124, two fluorescent tagged version of PFM067 maintain the same antiviral properties against HSV-2 as the parent compound and localize intracellularly inside the endoplasmic reticulum and the cis-Golgi network. Moreover, we also demonstrate that both tagged molecules co-localize with oxysterol-binding protein (OSBP) and are able to induce its re-localization. Finally, we report that PFM120 and PFM124 are endowed with antiviral activity against another OSBP-dependent viral pathogen, i.e. the human rhinovirus (HRV), different in structure and replication strategy from HSV-2. Taken together, these results candidate PFM120 and PFM124 as useful tools to investigate the actual mechanism of action and molecular target(s) of cholenamide-based antivirals and provide a proof of principle to explore them as a promising broad-spectrum class of antiviral agents.
2024
153
1
14
Broad-spectrum antiviral; Cholenamide derivative; Fluorescent probe; Herpes virus inhibitor
Nigro, Fatima; Civra, Andrea; Porporato, Domiziana; Costantino, Matteo; Francese, Rachele; Poli, Giuseppe; Romani, Aldo; Lembo, David; Marinozzi, Maur...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0045206824008277-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 13.38 MB
Formato Adobe PDF
13.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2064475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact