Astrocyte heterogeneity has been well explored, but our understanding of white matter (WM) astrocytes and their distinctions from gray matter (GM) astrocytes remains limited. Here, we compared astrocytes from cortical GM and WM/corpus callosum (WM/CC) using single-cell RNA sequencing and spatial transcriptomics of the murine forebrain. The comparison revealed similarities but also significant differences between WM and GM astrocytes, including cytoskeletal and metabolic hallmarks specific to WM astrocytes with molecular properties also shared with human WM astrocytes. When we compared murine astrocytes from two different WM regions, the cortex and cerebellum, we found that they exhibited distinct, region-specific molecular properties, with the cerebellum lacking, for example, a specific cluster of WM astrocytes expressing progenitor and proliferation genes. Functional experiments confirmed astrocyte proliferation in the WM/CC, but not in the cerebellar WM, suggesting that the WM/CC may be a source of continued astrogenesis.

Astrocyte heterogeneity reveals region-specific astrogenesis in the white matter

Buffo, Annalisa;
2025-01-01

Abstract

Astrocyte heterogeneity has been well explored, but our understanding of white matter (WM) astrocytes and their distinctions from gray matter (GM) astrocytes remains limited. Here, we compared astrocytes from cortical GM and WM/corpus callosum (WM/CC) using single-cell RNA sequencing and spatial transcriptomics of the murine forebrain. The comparison revealed similarities but also significant differences between WM and GM astrocytes, including cytoskeletal and metabolic hallmarks specific to WM astrocytes with molecular properties also shared with human WM astrocytes. When we compared murine astrocytes from two different WM regions, the cortex and cerebellum, we found that they exhibited distinct, region-specific molecular properties, with the cerebellum lacking, for example, a specific cluster of WM astrocytes expressing progenitor and proliferation genes. Functional experiments confirmed astrocyte proliferation in the WM/CC, but not in the cerebellar WM, suggesting that the WM/CC may be a source of continued astrogenesis.
2025
28
3
457
469
https://www.nature.com/articles/s41593-025-01878-6
astrocyte, stem cell, white matter
Bocchi, Riccardo; Thorwirth, Manja; Simon-Ebert, Tatiana; Koupourtidou, Christina; Clavreul, Solène; Kolf, Keegan; Della Vecchia, Patrizia; Bottes, Sa...espandi
File in questo prodotto:
File Dimensione Formato  
Bocchi et al 2025_compressed.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2067176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact