Unisolvence of unsymmetric Kansa collocation is still a substantially open problem. We prove that Kansa matrices with MultiQuadrics and Inverse MultiQuadrics for the Dirichlet problem of the Poisson equation are almost surely nonsingular, when the collocation points are chosen by any continuous random distribution in the domain interior and arbitrarily on its boundary.

Nonsingularity of unsymmetric Kansa matrices: Random collocation by MultiQuadrics and Inverse MultiQuadrics

Cavoretto, R.
First
;
De Rossi, A.;
2025-01-01

Abstract

Unisolvence of unsymmetric Kansa collocation is still a substantially open problem. We prove that Kansa matrices with MultiQuadrics and Inverse MultiQuadrics for the Dirichlet problem of the Poisson equation are almost surely nonsingular, when the collocation points are chosen by any continuous random distribution in the domain interior and arbitrarily on its boundary.
2025
234
390
395
Inverse MultiQuadrics; MultiQuadrics; Poisson equation; Radial Basis Functions; Unisolvence; Unsymmetric Kansa collocation method
Cavoretto, R.; De Rossi, A.; Dell'Accio, F.; Sommariva, A.; Vianello, M.
File in questo prodotto:
File Dimensione Formato  
J74.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 629.58 kB
Formato Adobe PDF
629.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2067265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact