Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto INSERISCI in fondo alla pagina
CINECA IRIS Institutional Research Information System
The Pierre Auger Observatory is the most sensitive instrument to detect
photons with energies above $10^{17}$ eV. It measures extensive air showers
generated by ultra high energy cosmic rays using a hybrid technique that
exploits the combination of a fluorescence detector with a ground array of
particle detectors. The signatures of a photon-induced air shower are a larger
atmospheric depth of the shower maximum ($X_{max}$) and a steeper lateral
distribution function, along with a lower number of muons with respect to the
bulk of hadron-induced cascades. In this work, a new analysis technique in the
energy interval between 1 and 30 EeV (1 EeV = $10^{18}$ eV) has been developed
by combining the fluorescence detector-based measurement of $X_{max}$ with the
specific features of the surface detector signal through a parameter related to
the air shower muon content, derived from the universality of the air shower
development. No evidence of a statistically significant signal due to photon
primaries was found using data collected in about 12 years of operation. Thus,
upper bounds to the integral photon flux have been set using a detailed
calculation of the detector exposure, in combination with a data-driven
background estimation. The derived 95% confidence level upper limits are
0.0403, 0.01113, 0.0035, 0.0023, and 0.0021 km$^{-2}$ sr$^{-1}$ yr$^{-1}$ above
1, 2, 3, 5, and 10 EeV, respectively, leading to the most stringent upper
limits on the photon flux in the EeV range. Compared with past results, the
upper limits were improved by about 40% for the lowest energy threshold and by
a factor 3 above 3 EeV, where no candidates were found and the expected
background is negligible. The presented limits can be used to probe the
assumptions on chemical composition of ultra-high energy cosmic rays and allow
for the constraint of the mass and lifetime phase space of super-heavy dark
matter particles.
Search for photons above 10$^{18}$ eV by simultaneously measuring the
atmospheric depth and the muon content of air showers at the Pierre Auger
Observatory
The Pierre Auger Collaboration;A. Abdul Halim;P. Abreu;M. Aglietta;I. Allekotte;K. Almeida Cheminant;A. Almela;R. Aloisio;J. Alvarez-Muñiz;J. Ammerman Yebra;G. A. Anastasi;L. Anchordoqui;B. Andrada;L. Andrade Dourado;S. Andringa;L. Apollonio;C. Aramo;P. R. Araújo Ferreira;E. Arnone;J. C. Arteaga Velázquez;P. Assis;G. Avila;E. Avocone;A. Bakalova;F. Barbato;A. Bartz Mocellin;C. Berat;M. E. Bertaina;G. Bhatta;M. Bianciotto;P. L. Biermann;V. Binet;K. Bismark;T. Bister;J. Biteau;J. Blazek;C. Bleve;J. Blümer;M. Boháčová;D. Boncioli;C. Bonifazi;L. Bonneau Arbeletche;N. Borodai;J. Brack;P. G. Brichetto Orchera;F. L. Briechle;A. Bueno;S. Buitink;M. Buscemi;M. Büsken;A. Bwembya;K. S. Caballero-Mora;S. Cabana-Freire;L. Caccianiga;F. Campuzano;R. Caruso;A. Castellina;F. Catalani;G. Cataldi;L. Cazon;M. Cerda;B. Čermáková;A. Cermenati;J. A. Chinellato;J. Chudoba;L. Chytka;R. W. Clay;A. C. Cobos Cerutti;R. Colalillo;M. R. Coluccia;R. Conceição;A. Condorelli;G. Consolati;M. Conte;F. Convenga;D. Correia dos Santos;P. J. Costa;C. E. Covault;M. Cristinziani;C. S. Cruz Sanchez;S. Dasso;K. Daumiller;B. R. Dawson;R. M. de Almeida;B. de Errico;J. de Jesús;S. J. de Jong;J. R. T. de Mello Neto;I. De Mitri;J. de Oliveira;D. de Oliveira Franco;F. de Palma;V. de Souza;E. De Vito;A. Del Popolo;O. Deligny;N. Denner;L. Deval;A. di Matteo;J. A. do;M. Dobre;C. Dobrigkeit;J. C. D'Olivo;L. M. Domingues Mendes;Q. Dorosti;J. C. dos Anjos;R. C. dos Anjos;J. Ebr;F. Ellwanger;M. Emam;R. Engel;I. Epicoco;M. Erdmann;A. Etchegoyen;C. Evoli;H. Falcke;G. Farrar;A. C. Fauth;T. Fehler;F. Feldbusch;F. Fenu;A. Fernandes;B. Fick;J. M. Figueira;P. Filip;A. Filipčič;T. Fitoussi;B. Flaggs;T. Fodran;T. Fujii;A. Fuster;C. Galea;B. García;C. Gaudu;A. Gherghel-Lascu;P. L. Ghia;U. Giaccari;J. Glombitza;F. Gobbi;F. Gollan;G. Golup;M. Gómez Berisso;P. F. Gómez Vitale;J. P. Gongora;J. M. González;N. González;D. Góra;A. Gorgi;M. Gottowik;F. Guarino;G. P. Guedes;E. Guido;L. Gülzow;S. Hahn;P. Hamal;M. R. Hampel;P. Hansen;D. Harari;V. M. Harvey;A. Haungs;T. Hebbeker;C. Hojvat;J. R. Hörandel;P. Horvath;M. Hrabovský;T. Huege;A. Insolia;P. G. Isar;P. Janecek;V. Jilek;J. A. Johnsen;J. Jurysek;K. -H. Kampert;B. Keilhauer;A. Khakurdikar;V. V. Kizakke Covilakam;H. O. Klages;M. Kleifges;F. Knapp;J. Köhler;F. Krieger;N. Kunka;B. L. Lago;N. Langner;M. A. Leigui de Oliveira;Y. Lema-Capeans;A. Letessier-Selvon;I. Lhenry-Yvon;L. Lopes;L. Lu;Q. Luce;J. P. Lundquist;A. Machado Payeras;M. Majercakova;D. Mandat;B. C. Manning;P. Mantsch;F. M. Mariani;A. G. Mariazzi;I. C. Mariş;G. Marsella;D. Martello;S. Martinelli;O. Martínez Bravo;M. A. Martins;H. -J. Mathes;J. Matthews;G. Matthiae;E. Mayotte;S. Mayotte;P. O. Mazur;G. Medina-Tanco;J. Meinert;D. Melo;A. Menshikov;C. Merx;S. Michal;M. I. Micheletti;L. Miramonti;S. Mollerach;F. Montanet;L. Morejon;K. Mulrey;R. Mussa;W. M. Namasaka;S. Negi;L. Nellen;K. Nguyen;G. Nicora;M. Niechciol;D. Nitz;D. Nosek;V. Novotny;L. Nožka;A. Nucita;L. A. Núñez;C. Oliveira;M. Palatka;J. Pallotta;S. Panja;G. Parente;T. Paulsen;J. Pawlowsky;M. Pech;J. Pękala;R. Pelayo;V. Pelgrims;L. A. S. Pereira;E. E. Pereira Martins;C. Pérez Bertolli;L. Perrone;S. Petrera;C. Petrucci;T. Pierog;M. Pimenta;M. Platino;B. Pont;M. Pothast;M. Pourmohammad Shahvar;P. Privitera;M. Prouza;S. Querchfeld;J. Rautenberg;D. Ravignani;J. V. Reginatto Akim;M. Reininghaus;A. Reuzki;J. Ridky;F. Riehn;M. Risse;V. Rizi;W. Rodrigues de Carvalho;E. Rodriguez;J. Rodriguez Rojo;M. J. Roncoroni;S. Rossoni;M. Roth;E. Roulet;A. C. Rovero;A. Saftoiu;M. Saharan;F. Salamida;H. Salazar;G. Salina;J. D. Sanabria Gomez;F. Sánchez;E. M. Santos;E. Santos;F. Sarazin;R. Sarmento;R. Sato;P. Savina;C. M. Schäfer;V. Scherini;H. Schieler;M. Schimassek;M. Schimp;D. Schmidt;O. Scholten;H. Schoorlemmer;P. Schovánek;F. G. Schröder;J. Schulte;T. Schulz;S. J. Sciutto;M. Scornavacche;A. Sedoski;A. Segreto;S. Sehgal;S. U. Shivashankara;G. Sigl;K. Simkova;F. Simon;R. Smau;R. Šmída;P. Sommers;R. Squartini;M. Stadelmaier;S. Stanič;J. Stasielak;P. Stassi;S. Strähnz;M. Straub;T. Suomijärvi;A. D. Supanitsky;Z. Svozilikova;Z. Szadkowski;F. Tairli;A. Tapia;C. Taricco;C. Timmermans;O. Tkachenko;P. Tobiska;C. J. Todero Peixoto;B. Tomé;Z. Torrès;A. Travaini;P. Travnicek;M. Tueros;M. Unger;R. Uzeiroska;L. Vaclavek;M. Vacula;J. F. Valdés Galicia;L. Valore;E. Varela;V. Vašíčková;A. Vásquez-Ramírez;D. Veberič;I. D. Vergara Quispe;V. Verzi;J. Vicha;J. Vink;S. Vorobiov;C. Watanabe;A. A. Watson;A. Weindl;L. Wiencke;H. Wilczyński;D. Wittkowski;B. Wundheiler;B. Yue;A. Yushkov;O. Zapparrata;E. Zas;D. Zavrtanik;M. Zavrtanik
2024-01-01
Abstract
The Pierre Auger Observatory is the most sensitive instrument to detect
photons with energies above $10^{17}$ eV. It measures extensive air showers
generated by ultra high energy cosmic rays using a hybrid technique that
exploits the combination of a fluorescence detector with a ground array of
particle detectors. The signatures of a photon-induced air shower are a larger
atmospheric depth of the shower maximum ($X_{max}$) and a steeper lateral
distribution function, along with a lower number of muons with respect to the
bulk of hadron-induced cascades. In this work, a new analysis technique in the
energy interval between 1 and 30 EeV (1 EeV = $10^{18}$ eV) has been developed
by combining the fluorescence detector-based measurement of $X_{max}$ with the
specific features of the surface detector signal through a parameter related to
the air shower muon content, derived from the universality of the air shower
development. No evidence of a statistically significant signal due to photon
primaries was found using data collected in about 12 years of operation. Thus,
upper bounds to the integral photon flux have been set using a detailed
calculation of the detector exposure, in combination with a data-driven
background estimation. The derived 95% confidence level upper limits are
0.0403, 0.01113, 0.0035, 0.0023, and 0.0021 km$^{-2}$ sr$^{-1}$ yr$^{-1}$ above
1, 2, 3, 5, and 10 EeV, respectively, leading to the most stringent upper
limits on the photon flux in the EeV range. Compared with past results, the
upper limits were improved by about 40% for the lowest energy threshold and by
a factor 3 above 3 EeV, where no candidates were found and the expected
background is negligible. The presented limits can be used to probe the
assumptions on chemical composition of ultra-high energy cosmic rays and allow
for the constraint of the mass and lifetime phase space of super-heavy dark
matter particles.
The Pierre Auger Collaboration; A. Abdul Halim; P. Abreu; M. Aglietta; I. Allekotte; K. Almeida Cheminant; A. Almela; R. Aloisio; J. Alvarez-Muñiz; J....espandi
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2067572
Citazioni
ND
ND
2
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione.
La simulazione si basa sui dati IRIS e presenta gli indicatori calcolati alla data indicata sul report. Si ricorda che in sede di domanda ASN presso il MIUR gli indicatori saranno invece calcolati a partire dal 1° gennaio rispettivamente del quinto/decimo/quindicesimo anno precedente la scadenza del quadrimestre di presentazione della domanda (art 2 del DM 598/2018).
In questa simulazione pertanto il valore degli indicatori potrà differire da quello conteggiato all’atto della domanda ASN effettuata presso il MIUR a seguito di:
Correzioni imputabili a eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori.
Presenza di eventuali errori di catalogazione e/o dati mancanti in IRIS
Variabilità nel tempo dei valori citazionali (per i settori bibliometrici)
Variabilità della finestra temporale considerata in funzione della sessione di domanda ASN a cui si partecipa.
La presente simulazione è stata realizzata sulla base delle regole riportate nel DM 598/2018 e dell'allegata Tabella A e delle specifiche definite all'interno del Focus Group Cineca relativo al modulo IRIS ER. Il Cineca non si assume alcuna responsabilità in merito all'uso che il diretto interessato o terzi faranno della simulazione.