In the present paper we deal with stochastic semilinear partial differential equations of parabolic type with (t,x)-depending coefficients which may admit a polynomial growth with respect to the space variable. Under suitable assumptions on the coefficients of the parabolic operator, on the initial data and on the stochastic noise, we prove existence of a unique (mild) function-valued solution for the associated Cauchy problem.

Solution theory to semilinear parabolic stochastic partial differential equations with polynomially bounded coefficients

Coriasco S.;
2025-01-01

Abstract

In the present paper we deal with stochastic semilinear partial differential equations of parabolic type with (t,x)-depending coefficients which may admit a polynomial growth with respect to the space variable. Under suitable assumptions on the coefficients of the parabolic operator, on the initial data and on the stochastic noise, we prove existence of a unique (mild) function-valued solution for the associated Cauchy problem.
2025
16
1
1
20
https://link.springer.com/article/10.1007/s11868-024-00665-4
Parabolic stochastic partial differential equations; Function-valued solutions; Variable coefficients; Fundamental solution
Ascanelli A.; Coriasco S.; Suss A.
File in questo prodotto:
File Dimensione Formato  
ACS_SGParSemilinSPDEs.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 388.63 kB
Formato Adobe PDF
388.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SGParabSemilinSPDEs.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 192.95 kB
Formato Adobe PDF
192.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2067610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact