Understanding of bonding is key to modeling materials and predicting properties thereof. A widely adopted indicator of bonds and atomic shells is the electron localization function (ELF). The building blocks of the ELF are also used in the construction of modern density functional approximations. Here, we demonstrate that the ELF breaks down when applied beyond regular nonrelativistic quantum states. We show that for tackling general noncollinear open-shell solutions, it is essential to address both the U(1) gauge invariance, i.e., invariance under a multiplication by a position dependent phase factor, and SU(2) gauge invariance, i.e., invariance under local spin rotations, conjointly. Remarkably, we find that the extended ELF also improves the description of paradigmatic collinear states.

Electron Localization Function for Noncollinear Spins

Desmarais J. K.;Erba A.;Pittalis S.
2024-01-01

Abstract

Understanding of bonding is key to modeling materials and predicting properties thereof. A widely adopted indicator of bonds and atomic shells is the electron localization function (ELF). The building blocks of the ELF are also used in the construction of modern density functional approximations. Here, we demonstrate that the ELF breaks down when applied beyond regular nonrelativistic quantum states. We show that for tackling general noncollinear open-shell solutions, it is essential to address both the U(1) gauge invariance, i.e., invariance under a multiplication by a position dependent phase factor, and SU(2) gauge invariance, i.e., invariance under local spin rotations, conjointly. Remarkably, we find that the extended ELF also improves the description of paradigmatic collinear states.
2024
133
13
136401
136401
Desmarais J.K.; Vignale G.; Bencheikh K.; Erba A.; Pittalis S.
File in questo prodotto:
File Dimensione Formato  
ELF_PRL.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ZwoELF.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 9.6 MB
Formato Adobe PDF
9.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2068310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact