Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly evolving neurodegenerative disease arising from the loss of glutamatergic corticospinal neurons (CSN) and cholinergic motoneurons (MN). Here, we performed comparative cross-species transcriptomics of CSN using published snRNA-seq data from the motor cortex of ALS and control postmortem tissues, and performed longitudinal RNA-seq on CSN purified from male Sod1G86R mice. We report that CSN undergo ER stress and altered mRNA translation, and identify the transcription factor CREB3 and its regulatory network as a resilience marker of ALS, not only amongst vulnerable neuronal populations, but across all neuronal populations as well as other cell types. Using genetic and epidemiologic analyses we further identify the rare variant CREB3R119G (rs11538707) as a positive disease modifier in ALS. Through gain of function, CREB3R119G decreases the risk of developing ALS and the motor progression rate of ALS patients.

CREB3 gain of function variants protect against ALS

Chio, Adriano;
2025-01-01

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly evolving neurodegenerative disease arising from the loss of glutamatergic corticospinal neurons (CSN) and cholinergic motoneurons (MN). Here, we performed comparative cross-species transcriptomics of CSN using published snRNA-seq data from the motor cortex of ALS and control postmortem tissues, and performed longitudinal RNA-seq on CSN purified from male Sod1G86R mice. We report that CSN undergo ER stress and altered mRNA translation, and identify the transcription factor CREB3 and its regulatory network as a resilience marker of ALS, not only amongst vulnerable neuronal populations, but across all neuronal populations as well as other cell types. Using genetic and epidemiologic analyses we further identify the rare variant CREB3R119G (rs11538707) as a positive disease modifier in ALS. Through gain of function, CREB3R119G decreases the risk of developing ALS and the motor progression rate of ALS patients.
2025
16
1
1
8
Megat, Salim; Marques, Christine; Hernán-Godoy, Marina; Sellier, Chantal; Stuart-Lopez, Geoffrey; Dirrig-Grosch, Sylvie; Gorin, Charlotte; Brunet, Aur...espandi
File in questo prodotto:
File Dimensione Formato  
Nature Commun 2025 - Megat - CREB3 gain of function variants protect against ALS.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 21.28 MB
Formato Adobe PDF
21.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2069461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact