Apocarotenoids are ancient signaling molecules that have played crucial roles in biological communication and adaptation across evolutionary history. Originating in cyanobacteria, these molecules have diversified significantly in plants, where they contribute to stress perception, developmental regulation, and environmental responses. While some apocarotenoids, such as abscisic acid (ABA) and strigolactones (SLs), have been formally classified as plant hormones due to the identification of specific receptors, many others remain functionally enigmatic despite their profound effects on gene regulation and plant physiology. In this study, we focus on β-carotene-derived apocarotenoids that lack identified receptors, shedding light on their potential signaling roles beyond traditional hormone pathways. By synthesizing current knowledge, we highlight key gaps in understanding their biosynthesis, transport, perception, and downstream effects. Addressing these gaps is essential for unraveling the full scope of apocarotenoid-mediated signaling networks in plants. A deeper understanding of these molecules could not only redefine plant hormone classification but also open new avenues for improving crop resilience and stress adaptation in the face of climate change.

Apocarotenoids as Stress Signaling Molecules in Plants

Carna, Maurizio
First
;
Korwin Krukowski, Paolo;Tosato, Edoardo;D'Alessandro, Stefano
Last
2025-01-01

Abstract

Apocarotenoids are ancient signaling molecules that have played crucial roles in biological communication and adaptation across evolutionary history. Originating in cyanobacteria, these molecules have diversified significantly in plants, where they contribute to stress perception, developmental regulation, and environmental responses. While some apocarotenoids, such as abscisic acid (ABA) and strigolactones (SLs), have been formally classified as plant hormones due to the identification of specific receptors, many others remain functionally enigmatic despite their profound effects on gene regulation and plant physiology. In this study, we focus on β-carotene-derived apocarotenoids that lack identified receptors, shedding light on their potential signaling roles beyond traditional hormone pathways. By synthesizing current knowledge, we highlight key gaps in understanding their biosynthesis, transport, perception, and downstream effects. Addressing these gaps is essential for unraveling the full scope of apocarotenoid-mediated signaling networks in plants. A deeper understanding of these molecules could not only redefine plant hormone classification but also open new avenues for improving crop resilience and stress adaptation in the face of climate change.
2025
15
9
926
926
apocarotenoids; abiotic stress; β-cyclocitral; signaling; photosynthesis; plant-hormones
Carna, Maurizio; Korwin Krukowski, Paolo; Tosato, Edoardo; D'Alessandro, Stefano
File in questo prodotto:
File Dimensione Formato  
agriculture-3577261.docx

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 644.24 kB
Formato Microsoft Word XML
644.24 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2070053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact