Assessing and quantifying recruitability are important for characterizing ARDS severity and for reducing or preventing the atelectrauma caused by the cyclic opening and closing of pulmonary units. Over the years, several methods for recruitment assessment have been developed, grouped into three main approaches: 1) Quantitative CT Scanning: This method accurately measures the amount of atelectatic lung tissue that regains aeration; 2) Regional Gas Volume Measurement: Based on anatomical markers, this approach assesses gas volume within a specified lung region; 3) Compliance-Based Gas Volume Measurement: This technique compares actual gas volume at a given pressure to expected values, assuming respiratory system compliance is constant within the explored pressure range. Additional methods, such as lung ultrasonography and electrical impedance variation, have also been explored. This paper details the distribution of opening and closing pressures throughout the lung parenchyma, which underpin the concept of recruitability. The distribution of recruitable regions corresponds to atelectasis distribution, with the pressure needed for recruitment varying according to whether the atelectasis is "loose" or "sticky." We also discuss the effects of different PEEP levels on preventing atelectrauma, the importance of keeping some lung areas closed throughout the respiratory cycle, and briefly cover the roles of sigh ventilation, prone positioning, and the closed lung approach.

Assessment of recruitment from CT to the bedside: challenges and future directions

Collino F.;
2025-01-01

Abstract

Assessing and quantifying recruitability are important for characterizing ARDS severity and for reducing or preventing the atelectrauma caused by the cyclic opening and closing of pulmonary units. Over the years, several methods for recruitment assessment have been developed, grouped into three main approaches: 1) Quantitative CT Scanning: This method accurately measures the amount of atelectatic lung tissue that regains aeration; 2) Regional Gas Volume Measurement: Based on anatomical markers, this approach assesses gas volume within a specified lung region; 3) Compliance-Based Gas Volume Measurement: This technique compares actual gas volume at a given pressure to expected values, assuming respiratory system compliance is constant within the explored pressure range. Additional methods, such as lung ultrasonography and electrical impedance variation, have also been explored. This paper details the distribution of opening and closing pressures throughout the lung parenchyma, which underpin the concept of recruitability. The distribution of recruitable regions corresponds to atelectasis distribution, with the pressure needed for recruitment varying according to whether the atelectasis is "loose" or "sticky." We also discuss the effects of different PEEP levels on preventing atelectrauma, the importance of keeping some lung areas closed throughout the respiratory cycle, and briefly cover the roles of sigh ventilation, prone positioning, and the closed lung approach.
2025
29
1
1
12
Acute respiratory distress syndrome; Mechanical ventilation; Positive end expiratory pressure; Recruitment
Giovanazzi S.; Nocera D.; Catozzi G.; Collino F.; Cressoni M.; Ball L.; Moerer O.; Quintel M.; Camporota L.; Gattinoni L.
File in questo prodotto:
File Dimensione Formato  
Assessment of recruitment from CT to the bedside challenges and future directions.pdf

Accesso aperto

Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2071019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact