We consider the vectorial analogue of the thin free boundary problem introduced by Caffarelli et al. (JEur math Soc 12:1151-1179, 2010) as a realization of a nonlocal version of the classical Bernoulli problem. We study optimal regularity, nondegeneracy, and density properties of local minimizers. Via a blow-up analysis based on a Weiss type monotonicity formula, we show that the free boundary is the union of a "regular" and a "singular" part. Finally we use a viscosity approach to prove C-1,C-alpha regularity of the regular part of the free boundary.

A vectorial problem with thin free boundary

Tortone G.
2023-01-01

Abstract

We consider the vectorial analogue of the thin free boundary problem introduced by Caffarelli et al. (JEur math Soc 12:1151-1179, 2010) as a realization of a nonlocal version of the classical Bernoulli problem. We study optimal regularity, nondegeneracy, and density properties of local minimizers. Via a blow-up analysis based on a Weiss type monotonicity formula, we show that the free boundary is the union of a "regular" and a "singular" part. Finally we use a viscosity approach to prove C-1,C-alpha regularity of the regular part of the free boundary.
2023
62
8
1
34
https://link.springer.com/content/pdf/10.1007/s00526-023-02561-z.pdf
De Silva D.; Tortone G.
File in questo prodotto:
File Dimensione Formato  
[2] De Silva Tortone CalcVar 2023.pdf

Accesso riservato

Descrizione: Open access version
Tipo di file: PDF EDITORIALE
Dimensione 534.06 kB
Formato Adobe PDF
534.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2076111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact