2D magnets represent material systems in which magnetic order and topological phase transitions can be observed. Based on these phenomena, novel types of computing architectures and magnetoelectronic devices can be envisaged. Unlike conventional magnetic films, their magnetism is independent of the substrate and interface qualities, and 2D magnetic properties manifest even in formally bulk single crystals. However, 2D magnetism in layered materials is rarely reported often due to weak exchange interactions and magnetic anisotropy, and low magnetic transition temperatures. Here, the electron spin resonance (ESR) properties of a layered antiferromagnetic CrSBr single crystal are reported. The W-like shape angular dependence of the ESR linewidth provides a signature for room temperature spin–spin correlations and for the XY spin model. By approaching the Néel temperature the arising of competing intralayer ferromagnetic and interlayer antiferromagnetic interactions might lead to the formation of vortex and antivortex pairs. This argument is inferred by modeling the temperature dependence of the ESR linewidth with the topological Berezinskii-Kosterlitz-Thouless phase transition. These findings together with the chemical stability and semiconducting properties, make CrSBr a promising layered magnet for future magneto- and topological-electronics.

Revealing 2D Magnetism in a Bulk CrSBr Single Crystal by Electron Spin Resonance

Marco Fanciulli
Last
2022-01-01

Abstract

2D magnets represent material systems in which magnetic order and topological phase transitions can be observed. Based on these phenomena, novel types of computing architectures and magnetoelectronic devices can be envisaged. Unlike conventional magnetic films, their magnetism is independent of the substrate and interface qualities, and 2D magnetic properties manifest even in formally bulk single crystals. However, 2D magnetism in layered materials is rarely reported often due to weak exchange interactions and magnetic anisotropy, and low magnetic transition temperatures. Here, the electron spin resonance (ESR) properties of a layered antiferromagnetic CrSBr single crystal are reported. The W-like shape angular dependence of the ESR linewidth provides a signature for room temperature spin–spin correlations and for the XY spin model. By approaching the Néel temperature the arising of competing intralayer ferromagnetic and interlayer antiferromagnetic interactions might lead to the formation of vortex and antivortex pairs. This argument is inferred by modeling the temperature dependence of the ESR linewidth with the topological Berezinskii-Kosterlitz-Thouless phase transition. These findings together with the chemical stability and semiconducting properties, make CrSBr a promising layered magnet for future magneto- and topological-electronics.
2022
32
45
2207044-1
2207044-9
2D magnets; Berezinskii–Kosterlitz–Thouless transition; CrSBr; electron spin resonance; magnetic anisotropy
Fabrizio Moro; Shenggang Ke; Andrés Granados del Águila; Aljoscha Söll; Zdenek Sofer; Qiong Wu; Ming Yue; Liang Li; Xue Liu; Marco Fanciulli...espandi
File in questo prodotto:
File Dimensione Formato  
Moro-2022-Adv Funct Mater-VoR.pdf

Accesso riservato

Dimensione 4.55 MB
Formato Adobe PDF
4.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2076537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
social impact