: The generation of synthetic textile waste is a growing global concern, with an unsustainable rate of expansion. This study addresses the growing issue of synthetic textile waste by converting polyester-polyurethane (PET-PU) post-industrial scraps into microporous carbon materials, which can be utilized for wastewater treatment. Using a straightforward pyrolysis process, we achieved a high specific surface area (632 m2/g) and narrow porosity range (2-10 Å) without requiring chemical activation. The produced carbon materials effectively adsorbed methylene blue and orange II dyes, with maximum adsorption capacities of 169.49 mg/g and 147.56 mg/g, respectively. Kinetic studies demonstrated that adsorption followed a pseudo-second-order model, indicating strong interactions between the adsorbent and dyes. Regeneration tests showed that the C-PET-PU could be reused for multiple cycles with over 85% retention of its original adsorption capacity. Preliminary life cycle assessment (LCA) and life cycle cost (LCC) analysis highlighted the environmental and economic advantages of this upcycling approach, showing a reduced global warming potential and a production cost of approximately 1.65 EUR/kg. These findings suggest that transforming PET-PU waste into valuable adsorbents provides a sustainable solution for the circular economy and highlights the potential for broader applications in environmental remediation.

From Waste to Worth: Innovative Pyrolysis of Textile Waste into Microporous Carbons for Enhanced Environmental Sustainability

Anceschi, Anastasia
First
;
Trotta, Francesco;Caldera, Fabrizio;Magnacca, Giuliana;
2025-01-01

Abstract

: The generation of synthetic textile waste is a growing global concern, with an unsustainable rate of expansion. This study addresses the growing issue of synthetic textile waste by converting polyester-polyurethane (PET-PU) post-industrial scraps into microporous carbon materials, which can be utilized for wastewater treatment. Using a straightforward pyrolysis process, we achieved a high specific surface area (632 m2/g) and narrow porosity range (2-10 Å) without requiring chemical activation. The produced carbon materials effectively adsorbed methylene blue and orange II dyes, with maximum adsorption capacities of 169.49 mg/g and 147.56 mg/g, respectively. Kinetic studies demonstrated that adsorption followed a pseudo-second-order model, indicating strong interactions between the adsorbent and dyes. Regeneration tests showed that the C-PET-PU could be reused for multiple cycles with over 85% retention of its original adsorption capacity. Preliminary life cycle assessment (LCA) and life cycle cost (LCC) analysis highlighted the environmental and economic advantages of this upcycling approach, showing a reduced global warming potential and a production cost of approximately 1.65 EUR/kg. These findings suggest that transforming PET-PU waste into valuable adsorbents provides a sustainable solution for the circular economy and highlights the potential for broader applications in environmental remediation.
2025
17
3
1
25
https://www.scopus.com/record/display.uri?eid=2-s2.0-85217552485&origin=resultslist&sort=plf-f&src=s&sid=4a75d15294e007c240a76db69c757b82&sot=anl&sdt=aut&s=AU-ID("Magnacca,+Giuliana"+6603199583)&sl=38&sessionSearchId=4a75d15294e007c240a76db69c757b82&relpos=1
PET-PU; activated carbon; polyester valorization; pyrolysis; recycling; thermal conversion
Anceschi, Anastasia; Trotta, Francesco; Zoccola, Marina; Caldera, Fabrizio; Magnacca, Giuliana; Patrucco, Alessia
File in questo prodotto:
File Dimensione Formato  
From-Waste-to-Worth-Innovative-Pyrolysis-of-Textile-Waste-into-Microporous-Carbons-for-Enhanced-Environmental-SustainabilityPolymers.pdf

Accesso aperto

Descrizione: paper
Tipo di file: PDF EDITORIALE
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2076735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact