Reformulating a Gaussian state space model in matrix form, we obtain expressions for the likelihood function and the smoothing vector that are generally more efficient than the standard recursive algorithm. We also retrieve filtering weights and deal with data irregularities.

Efficient matrix approach for classical inference in state space models

Petrella, Ivan
2019-01-01

Abstract

Reformulating a Gaussian state space model in matrix form, we obtain expressions for the likelihood function and the smoothing vector that are generally more efficient than the standard recursive algorithm. We also retrieve filtering weights and deal with data irregularities.
2019
181
22
27
Likelihood; Sparse matrices; State smoothing; State space models
Delle Monache, Davide; Petrella, Ivan
File in questo prodotto:
File Dimensione Formato  
EL_2019.pdf

Accesso riservato

Dimensione 427.64 kB
Formato Adobe PDF
427.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2077030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact