A class of intertemporal optimization models characterized by a recursive objective functional obtained as the limit of iterations of the Koopmans aggregator is considered. We focus on negative dynamic programming problems in which aggregators may be unbounded from below and establish existence of an optimal solution under the assumption of strong concavity for the aggregator, both in the deterministic and in the stochastic settings.

Negative dynamic programming with non-additively time-separable objective

Luigi Montrucchio;Fabio Privileggi
2025-01-01

Abstract

A class of intertemporal optimization models characterized by a recursive objective functional obtained as the limit of iterations of the Koopmans aggregator is considered. We focus on negative dynamic programming problems in which aggregators may be unbounded from below and establish existence of an optimal solution under the assumption of strong concavity for the aggregator, both in the deterministic and in the stochastic settings.
2025
2025
33
1
29
https://cot.mathres.org/archives/2008
Bellman equation, Negative dynamic programming, Non-additive recursive objective, Strongly concave functionals
Luigi Montrucchio; Fabio Privileggi
File in questo prodotto:
File Dimensione Formato  
MontrucchioPrivileggi25.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 451.24 kB
Formato Adobe PDF
451.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2024-02COT.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 470.01 kB
Formato Adobe PDF
470.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2079833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact