Cadmium sulfide (CdS)-based photocatalysts are prepared following a hydrothermal procedure (with CdCl2 and thiourea as precursors). The HydroThermal material annealed (CdS-HTa) is crystalline with a band gap of 2.31 eV. Photoelectrochemical investigation indicates a very reducing photo-potential of −0.9 V, which is very similar to that of commercial CdS. CdS-HTa, albeit having similar reducing properties, is more active than commercial CdS in the reductive dehalogenation of 2,2-dichloropropionic acid (dalapon) to propionic acid. Spectroscopic, electro-, and photoelectrochemical investigation show that photocatalytic properties of CdS are correlated to its electronic structure. The reductive dehalogenation of dalapon has a double significance: on one hand, it represents a demanding reductive process for a photocatalyst, and on the other hand, it has a peculiar interest in water treatment because dalapon can be considered a representative molecule of persistent organic pollutants and is one of the most important disinfection by products, whose removal from the water is the final obstacle to its complete reuse. HPLC-MS investigation points out that complete disappearance of dalapon passes through 2-monochloropropionic acid and leads to propionic acid as the final product. CdS-HTa requires very mild working conditions (room temperature, atmospheric pressure, natural pH), and it is stable and recyclable without significant loss of activity.

CdS-Based Hydrothermal Photocatalysts for Complete Reductive Dehalogenation of a Chlorinated Propionic Acid in Water by Visible Light

Magnacca, Giuliana;
2024-01-01

Abstract

Cadmium sulfide (CdS)-based photocatalysts are prepared following a hydrothermal procedure (with CdCl2 and thiourea as precursors). The HydroThermal material annealed (CdS-HTa) is crystalline with a band gap of 2.31 eV. Photoelectrochemical investigation indicates a very reducing photo-potential of −0.9 V, which is very similar to that of commercial CdS. CdS-HTa, albeit having similar reducing properties, is more active than commercial CdS in the reductive dehalogenation of 2,2-dichloropropionic acid (dalapon) to propionic acid. Spectroscopic, electro-, and photoelectrochemical investigation show that photocatalytic properties of CdS are correlated to its electronic structure. The reductive dehalogenation of dalapon has a double significance: on one hand, it represents a demanding reductive process for a photocatalyst, and on the other hand, it has a peculiar interest in water treatment because dalapon can be considered a representative molecule of persistent organic pollutants and is one of the most important disinfection by products, whose removal from the water is the final obstacle to its complete reuse. HPLC-MS investigation points out that complete disappearance of dalapon passes through 2-monochloropropionic acid and leads to propionic acid as the final product. CdS-HTa requires very mild working conditions (room temperature, atmospheric pressure, natural pH), and it is stable and recyclable without significant loss of activity.
2024
14
7
1
16
https://www.scopus.com/record/display.uri?eid=2-s2.0-85190097656&origin=resultslist&sort=plf-f&src=s&sid=4a75d15294e007c240a76db69c757b82&sot=anl&sdt=aut&s=AU-ID("Magnacca,+Giuliana"+6603199583)&sl=38&sessionSearchId=4a75d15294e007c240a76db69c757b82&relpos=6
cadmium sulfide; chlorinated disinfection by products; dalapon; hydrodehalogenation reaction; photocatalysis; visible light
Milani, Martina; Mazzanti, Michele; Stevanin, Claudia; Chenet, Tatiana; Magnacca, Giuliana; Pasti, Luisa; Molinari, Alessandra
File in questo prodotto:
File Dimensione Formato  
paper Milani Molinari Nanomaterials 2024.pdf

Accesso aperto

Descrizione: articolo
Tipo di file: PDF EDITORIALE
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2081391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact