Prognostic predictive models in general, and even more machine learning models based on baseline characteristics, are critically dependent on the degree of the clarity and clinical coherence of their overall conceptual architechture.

Increasing conceptual clarity and confounders identification: a pragmatic way to enhance prognostic precision in ENIGMA clinical high risk for psychosis (CHR-P)

Preti, Antonio
Last
2025-01-01

Abstract

Prognostic predictive models in general, and even more machine learning models based on baseline characteristics, are critically dependent on the degree of the clarity and clinical coherence of their overall conceptual architechture.
2025
30
7
3319
3320
Raballo, Andrea; Poletti, Michele; Preti, Antonio
File in questo prodotto:
File Dimensione Formato  
Prognostic precision in ENIGMA CHR-P.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 286.39 kB
Formato Adobe PDF
286.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2081470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact