We compared the changes of selected immune parameters of Porcellio scaber to different stressors. The animals were either fed for two weeks with Au nanoparticles (NPs), CeO2 NPs, or Au ions or body‐injected with Au NPs, CeO2 NPs, or lipopolysaccharide endotoxin. Contrary to expec-tations, the feeding experiment showed that both NPs caused a significant increase in the total hae-mocyte count (THC). In contrast, the ion‐positive control resulted in a significantly decreased THC. Additionally, changes in phenoloxidase (PO)‐like activity, haemocyte viability, and nitric oxide (NO) levels seemed to depend on the stressor. Injection experiments also showed stressor‐depend-ant changes in measured parameters, such as CeO2 NPs and lipopolysaccharide endotoxin (LPS), caused more significant responses than Au NPs. These results show that feeding and injection of NPs caused an immune response and that the response differed significantly, depending on the exposure route. We did not expect the response to ingested NPs, due to the low exposure concentrations (100 μg/g dry weight food) and a firm gut epithelia, along with a lack of phagocytosis in the digestive system, which would theoretically prevent NPs from crossing the biological barrier. It remains a challenge for future research to reveal what the physiological and ecological significance is for the organism to sense and respond, via the immune system, to ingested foreign material.

Stressor‐dependant changes in immune parameters in the terrestrial isopod crustacean, porcellio scaber: A focus on nanomaterials

Barbero F.;
2021-01-01

Abstract

We compared the changes of selected immune parameters of Porcellio scaber to different stressors. The animals were either fed for two weeks with Au nanoparticles (NPs), CeO2 NPs, or Au ions or body‐injected with Au NPs, CeO2 NPs, or lipopolysaccharide endotoxin. Contrary to expec-tations, the feeding experiment showed that both NPs caused a significant increase in the total hae-mocyte count (THC). In contrast, the ion‐positive control resulted in a significantly decreased THC. Additionally, changes in phenoloxidase (PO)‐like activity, haemocyte viability, and nitric oxide (NO) levels seemed to depend on the stressor. Injection experiments also showed stressor‐depend-ant changes in measured parameters, such as CeO2 NPs and lipopolysaccharide endotoxin (LPS), caused more significant responses than Au NPs. These results show that feeding and injection of NPs caused an immune response and that the response differed significantly, depending on the exposure route. We did not expect the response to ingested NPs, due to the low exposure concentrations (100 μg/g dry weight food) and a firm gut epithelia, along with a lack of phagocytosis in the digestive system, which would theoretically prevent NPs from crossing the biological barrier. It remains a challenge for future research to reveal what the physiological and ecological significance is for the organism to sense and respond, via the immune system, to ingested foreign material.
2021
11
4
1
18
Cerium nanoparticles; Gold nanoparticles; Haemocyte; Immune response; Woodlice
Mayall C.; Dolar A.; Kokalj A.J.; Novak S.; Razinger J.; Barbero F.; Puntes V.; Drobne D.
File in questo prodotto:
File Dimensione Formato  
2021_Mayall_et-al.zip

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 13.49 MB
Formato Zip File
13.49 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2082899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact