The planetary system around the naked-eye star v2 Lupi (HD 136352; TOI-2011) is composed of three exoplanets with masses of 4.7, 11.2, and 8.6 Earth masses (M⊕). The TESS and CHEOPS missions revealed that all three planets are transiting and have radii straddling the radius gap separating volatile-rich and volatile-poor super-earths. Only a partial transit of planet d had been covered so we re-observed an inferior conjunction of the long-period 8.6 M⊕ exoplanet v2 Lup d with the CHEOPS space telescope. We confirmed its transiting nature by covering its whole 9.1 h transit for the first time. We refined the planet transit ephemeris to P = 107.13610.0022+0.0019 days and Tc = 2459009.77590.0096+0.0101 BJDTDB, improving by ~40 times on the previously reported transit timing uncertainty. This refined ephemeris will enable further follow-up of this outstanding long-period transiting planet to search for atmospheric signatures or explore the planet s Hill sphere in search for an exomoon. In fact, the CHEOPS observations also cover the transit of a large fraction of the planet s Hill sphere, which is as large as the Earth s, opening the tantalising possibility of catching transiting exomoons. We conducted a search for exomoon signals in this single-epoch light curve but found no conclusive photometric signature of additional transiting bodies larger than Mars. Yet, only a sustained follow-up of v2 Lup d transits will warrant a comprehensive search for a moon around this outstanding exoplanet.

A full transit of v 2Lupi d and the search for an exomoon in its Hill sphere with CHEOPS

Gandolfi D.;
2023-01-01

Abstract

The planetary system around the naked-eye star v2 Lupi (HD 136352; TOI-2011) is composed of three exoplanets with masses of 4.7, 11.2, and 8.6 Earth masses (M⊕). The TESS and CHEOPS missions revealed that all three planets are transiting and have radii straddling the radius gap separating volatile-rich and volatile-poor super-earths. Only a partial transit of planet d had been covered so we re-observed an inferior conjunction of the long-period 8.6 M⊕ exoplanet v2 Lup d with the CHEOPS space telescope. We confirmed its transiting nature by covering its whole 9.1 h transit for the first time. We refined the planet transit ephemeris to P = 107.13610.0022+0.0019 days and Tc = 2459009.77590.0096+0.0101 BJDTDB, improving by ~40 times on the previously reported transit timing uncertainty. This refined ephemeris will enable further follow-up of this outstanding long-period transiting planet to search for atmospheric signatures or explore the planet s Hill sphere in search for an exomoon. In fact, the CHEOPS observations also cover the transit of a large fraction of the planet s Hill sphere, which is as large as the Earth s, opening the tantalising possibility of catching transiting exomoons. We conducted a search for exomoon signals in this single-epoch light curve but found no conclusive photometric signature of additional transiting bodies larger than Mars. Yet, only a sustained follow-up of v2 Lup d transits will warrant a comprehensive search for a moon around this outstanding exoplanet.
2023
671
A154
1
16
https://www.aanda.org/articles/aa/full_html/2023/03/aa44790-22/aa44790-22.html
Planets and satellites: detection; Planets and satellites: general; Planets and satellites: individual: HD 136352
Ehrenreich D.; Delrez L.; Akinsanmi B.; Wilson T.G.; Bonfanti A.; Beck M.; Benz W.; Hoyer S.; Queloz D.; Alibert Y.; Charnoz S.; Collier Cameron A.; D...espandi
File in questo prodotto:
File Dimensione Formato  
Ehrenreich_2023.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 12.91 MB
Formato Adobe PDF
12.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2088331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact