More than 31,000 useful plant species have been documented to fulfil needs and services for humans or the animals and environment we depend on. Despite this diversity, humans currently satisfy most requirements with surprisingly few plant species; for example, just three crops – rice, wheat and maize – comprise more than 50% of plant derived calories. Here, we synthesize the projected impact of global climatic change on useful plants across the spectrum of plant domestication. We illustrate the demographic, spatial, ecophysiological, chemical, functional, evolutionary and cultural traits that are likely to characterise useful plants and their resilience in the next century. Using this framework, we consider a range of possible pathways for future human use of plants. These are centred on two trade-offs: i) diversification versus specialization in the range of species we utilize, and ii) substitution of the species towards those better suited to future climate versus facilitating adaptation in our existing suite of dominant useful plants. In the coming century, major challenges to agriculture and biodiversity will be dominated by increased climatic variation, shifting species ranges, disruption to biotic interactions, nutrient limitation and emerging pests and pathogens. These challenges must be mitigated, whilst enhancing sustainable production to meet the needs of a growing population and a more resource intensive standard of living. With the continued erosion of biodiversity, our future ability to choose among these pathways and trade-offs is likely to be diminished.

The climatic challenge: Which plants will people use in the next century?

Ulian, T.;
2020-01-01

Abstract

More than 31,000 useful plant species have been documented to fulfil needs and services for humans or the animals and environment we depend on. Despite this diversity, humans currently satisfy most requirements with surprisingly few plant species; for example, just three crops – rice, wheat and maize – comprise more than 50% of plant derived calories. Here, we synthesize the projected impact of global climatic change on useful plants across the spectrum of plant domestication. We illustrate the demographic, spatial, ecophysiological, chemical, functional, evolutionary and cultural traits that are likely to characterise useful plants and their resilience in the next century. Using this framework, we consider a range of possible pathways for future human use of plants. These are centred on two trade-offs: i) diversification versus specialization in the range of species we utilize, and ii) substitution of the species towards those better suited to future climate versus facilitating adaptation in our existing suite of dominant useful plants. In the coming century, major challenges to agriculture and biodiversity will be dominated by increased climatic variation, shifting species ranges, disruption to biotic interactions, nutrient limitation and emerging pests and pathogens. These challenges must be mitigated, whilst enhancing sustainable production to meet the needs of a growing population and a more resource intensive standard of living. With the continued erosion of biodiversity, our future ability to choose among these pathways and trade-offs is likely to be diminished.
2020
170
1
14
Biodiversity; Climate change; Conservation; Crop breeding; Crop wild relatives; Domestication; Food security; Medicinal plants; Resilience; Sustainable development
Borrell, J.S.; Dodsworth, S.; Forest, F.; Pérez-Escobar, O.A.; Lee, M.A.; Mattana, E.; Stevenson, P.C.; Howes, M.-J.R.; Pritchard, H.W.; Ballesteros, ...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2089130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 48
social impact