Human induced pluripotent stem cells (hiPSCs) are widely used in basic research because of their versatility and ability to differentiate into multiple cell types. In particular, differentiating hiPSCs into cardiac cells (hiPSC-CMs) has been an important milestone in cardiac pathophysiology studies. Although hiPSC-CMs offer a model for human cardiomyocytes, they still exhibit characteristics linked to the fetal cardiac cell phenotype. One important feature that prevents hiPSC-CMs from being identified as adult cells relates to their metabolism, which is a key factor in defining a mature phenotype capable of sustaining the workload requirements characteristic of fully differentiated cardiomyocytes. This review aims to present the most relevant strategies in terms of culture medium composition, culture times, and 3D culture methods that have been developed to promote the metabolic maturation of hiPSC-CMs, which are now widely used. Defining a standardized and universally accepted protocol would enable the creation of a cellular model for studies of cardiac pathophysiology from a patient-specific perspective and for drug screening.

Metabolic Maturation in hiPSC-Derived Cardiomyocytes: Emerging Strategies for Inducing the Adult Cardiac Phenotype.

Daniela Malan
First
;
Maria Pia Gallo
Membro del Collaboration Group
;
Federica Geddo
Membro del Collaboration Group
;
Renzo Levi
Membro del Collaboration Group
;
Giulia Querio
2025-01-01

Abstract

Human induced pluripotent stem cells (hiPSCs) are widely used in basic research because of their versatility and ability to differentiate into multiple cell types. In particular, differentiating hiPSCs into cardiac cells (hiPSC-CMs) has been an important milestone in cardiac pathophysiology studies. Although hiPSC-CMs offer a model for human cardiomyocytes, they still exhibit characteristics linked to the fetal cardiac cell phenotype. One important feature that prevents hiPSC-CMs from being identified as adult cells relates to their metabolism, which is a key factor in defining a mature phenotype capable of sustaining the workload requirements characteristic of fully differentiated cardiomyocytes. This review aims to present the most relevant strategies in terms of culture medium composition, culture times, and 3D culture methods that have been developed to promote the metabolic maturation of hiPSC-CMs, which are now widely used. Defining a standardized and universally accepted protocol would enable the creation of a cellular model for studies of cardiac pathophysiology from a patient-specific perspective and for drug screening.
2025
18
8
1
18
https://www.mdpi.com/1424-8247/18/8/1133
hiPSC-CMs; cardiomyocyte; metabolic maturation; metabolism; lactate; glucose oxidation; glycolysis; free fatty acid oxidation; mitochondria; oxidative metabolism
Daniela Malan, Maria Pia Gallo,Federica Geddo, Renzo Levi, Giulia Querio
File in questo prodotto:
File Dimensione Formato  
pharmaceuticals-18-01133.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2089350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact