In 2013 P. Habegger proved the Bogomolov property for the field generated over Q by the torsion points of a rational elliptic curve. We explore the possibility of applying the same strategy of proof to the case of field extensions cut out by Galois representations arising from more general modular forms.

Bogomolov property and Galois representations

Francesco Amoroso;Lea Terracini
In corso di stampa

Abstract

In 2013 P. Habegger proved the Bogomolov property for the field generated over Q by the torsion points of a rational elliptic curve. We explore the possibility of applying the same strategy of proof to the case of field extensions cut out by Galois representations arising from more general modular forms.
In corso di stampa
294
322
https://www.sciencedirect.com/science/article/pii/S0022314X25001891
Weil height, Bogomolov property, Modular forms, Galois representations
Francesco Amoroso; Lea Terracini
File in questo prodotto:
File Dimensione Formato  
JNT2025.pdf

Accesso aperto

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2089490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact