We show that a simple and accurate approach to the computation of hadron collider processes involving initial-state b quarks can be obtained by introducing an independently parametrized b PDF. We use the so-called FONLL method for the matching of a scheme in which the b quark is treated as a massless parton to that in which it is treated as a massive state, and extend it to the case in which the b quark PDF is not necessarily determined by perturbative matching conditions. This generalizes to hadronic collisions analogous results previously obtained for deep-inelastic scattering. The results corresponds to a “massive b” scheme, in which b mass effects are retained, yet the b quark is endowed with a PDF. We specifically study Higgs production in bottom fusion, and show that our approach overcomes difficulties related to the fact that in a standard massive four-flavor scheme b-quark induced processes only start at high perturbative orders.
Fitting the b-quark PDF as a massive-b scheme: Higgs production in bottom fusion
Forte, Stefano;Giani, Tommaso;
2019-01-01
Abstract
We show that a simple and accurate approach to the computation of hadron collider processes involving initial-state b quarks can be obtained by introducing an independently parametrized b PDF. We use the so-called FONLL method for the matching of a scheme in which the b quark is treated as a massless parton to that in which it is treated as a massive state, and extend it to the case in which the b quark PDF is not necessarily determined by perturbative matching conditions. This generalizes to hadronic collisions analogous results previously obtained for deep-inelastic scattering. The results corresponds to a “massive b” scheme, in which b mass effects are retained, yet the b quark is endowed with a PDF. We specifically study Higgs production in bottom fusion, and show that our approach overcomes difficulties related to the fact that in a standard massive four-flavor scheme b-quark induced processes only start at high perturbative orders.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



