The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 nitro-PAHs, and 14 polychlorinated biphenyls congeners in Eruca vesicaria (rocket) leaves. The method was optimized to address the matrix complexity of leafy vegetables and included a two-step dispersive solid-phase extraction (d-SPE) cleanup and aqueous dilution prior to SPME. Validation showed excellent performance, with MDLs between 0.1 and 6.7 µg/kg, recoveries generally between 70 and 120%, and precision (RSD%) below 20%. The greenness of the protocol was assessed using the AGREE metric, yielding a score of 0.60. Application to rocket samples irrigated with treated wastewater revealed no significant accumulation of target pollutants compared to commercial samples. All PCB and N-PAH congeners were below detection limits, and PAH concentrations were low and mostly limited to lighter compounds. Human health risk assessment based on toxic equivalent concentrations confirmed that estimated cancer risk (CR) values 10−9–10−8 were well below accepted safety thresholds. These findings support the safe use of reclaimed water for leafy crop irrigation under proper treatment conditions and highlight the suitability of the method for trace-level food safety monitoring.

Residues of Priority Organic Micropollutants in Eruca vesicaria (Rocket) Irrigated by Reclaimed Wastewater: Optimization of a QuEChERS SPME-GC/MS Protocol and Risk Assessment

Rivoira L.
First
;
Di Bonito S.;Del Bubba M.;Bruzzoniti M. C.
Last
2025-01-01

Abstract

The increasing use of reclaimed wastewater in agriculture raises growing concerns about the accumulation of priority organic micropollutants in edible crops. In this study, we developed and validated a novel QuEChERS–SPME–GC/MS method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons (PAHs), 3 nitro-PAHs, and 14 polychlorinated biphenyls congeners in Eruca vesicaria (rocket) leaves. The method was optimized to address the matrix complexity of leafy vegetables and included a two-step dispersive solid-phase extraction (d-SPE) cleanup and aqueous dilution prior to SPME. Validation showed excellent performance, with MDLs between 0.1 and 6.7 µg/kg, recoveries generally between 70 and 120%, and precision (RSD%) below 20%. The greenness of the protocol was assessed using the AGREE metric, yielding a score of 0.60. Application to rocket samples irrigated with treated wastewater revealed no significant accumulation of target pollutants compared to commercial samples. All PCB and N-PAH congeners were below detection limits, and PAH concentrations were low and mostly limited to lighter compounds. Human health risk assessment based on toxic equivalent concentrations confirmed that estimated cancer risk (CR) values 10−9–10−8 were well below accepted safety thresholds. These findings support the safe use of reclaimed water for leafy crop irrigation under proper treatment conditions and highlight the suitability of the method for trace-level food safety monitoring.
2025
14
17
1
21
food safety; polychlorinated biphenyls; polycyclic aromatic hydrocarbons; QuEChERS; reclaimed wastewater; rocket (Eruca vesicaria); SPME–GC/MS
Rivoira L.; Di Bonito S.; Libonati V.; Del Bubba M.; Beldean-Galea M.S.; Bruzzoniti M.C.
File in questo prodotto:
File Dimensione Formato  
foods-14-02963.pdf

Accesso aperto

Descrizione: PDF editoriale
Tipo di file: PDF EDITORIALE
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2095511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact