We extend a theorem, originally formulated by Blattner–Cohen–Montgomery for crossed products arising from Hopf algebras weakly acting on noncommutative algebras, to the realm of left Hopf algebroids. Our main motivation is an application to universal enveloping algebras of projective Lie–Rinehart algebras: for any given curved (resp. flat) connection, that is, a linear (resp. Lie–Rinehart) splitting of a Lie–Rinehart algebra extension, we provide a crossed (resp. smash) product decomposition of the associated universal enveloping algebra, and vice versa. As a geometric example, we describe the associative algebra generated by the invariant vector fields on the total space of a principal bundle as a crossed product of the algebra generated by the vertical ones and the algebra of differential operators on the base.
Universal enveloping algebras of Lie–Rinehart algebras: crossed products, connections, and curvature
Kowalzig, Niels;Saracco, Paolo
2024-01-01
Abstract
We extend a theorem, originally formulated by Blattner–Cohen–Montgomery for crossed products arising from Hopf algebras weakly acting on noncommutative algebras, to the realm of left Hopf algebroids. Our main motivation is an application to universal enveloping algebras of projective Lie–Rinehart algebras: for any given curved (resp. flat) connection, that is, a linear (resp. Lie–Rinehart) splitting of a Lie–Rinehart algebra extension, we provide a crossed (resp. smash) product decomposition of the associated universal enveloping algebra, and vice versa. As a geometric example, we describe the associative algebra generated by the invariant vector fields on the total space of a principal bundle as a crossed product of the algebra generated by the vertical ones and the algebra of differential operators on the base.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024-09-20_ConnectionsUEA_AcceptedManuscript.pdf
Accesso aperto
Descrizione: Manuscript
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



