In this paper we establish existence and properties of minimal energy solutions for the weakly coupled system −Δui+λiui=μi|ui|Kq−2ui+β|ui|q−2ui∏j≠i|uj|qinRdui∈H1(Rd),i=1,…,K,characterized by K-wise interaction (namely the interaction term involves the product of all the components). We consider both attractive (β>0) and repulsive cases (β<0), and we give sufficient conditions on β in order to have least energy fully non-trivial solutions, if necessary under a radial constraint. We also study the asymptotic behaviour of least energy fully non-trivial radial solutions in the limit of strong competition β→−∞, showing partial segregation phenomena which differ substantially from those arising in pairwise interaction models.

On least energy solutions for a nonlinear Schrödinger system with K-wise interaction

Giaretto, Lorenzo;Soave, Nicola
In corso di stampa

Abstract

In this paper we establish existence and properties of minimal energy solutions for the weakly coupled system −Δui+λiui=μi|ui|Kq−2ui+β|ui|q−2ui∏j≠i|uj|qinRdui∈H1(Rd),i=1,…,K,characterized by K-wise interaction (namely the interaction term involves the product of all the components). We consider both attractive (β>0) and repulsive cases (β<0), and we give sufficient conditions on β in order to have least energy fully non-trivial solutions, if necessary under a radial constraint. We also study the asymptotic behaviour of least energy fully non-trivial radial solutions in the limit of strong competition β→−∞, showing partial segregation phenomena which differ substantially from those arising in pairwise interaction models.
In corso di stampa
262
1
22
Ground states; K-wise interaction; Nehari manifold; Nonlinear Schrödinger systems; Strong competition
Giaretto, Lorenzo; Soave, Nicola
File in questo prodotto:
File Dimensione Formato  
2507.03480v1.pdf

Accesso aperto

Descrizione: Manoscritto arXiv
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 570 kB
Formato Adobe PDF
570 kB Adobe PDF Visualizza/Apri
1-s2.0-S0362546X25001907-main.pdf

Accesso riservato

Descrizione: Versione pubblicata su Nonlinear Analysis
Tipo di file: PDF EDITORIALE
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2100211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact