In this note, we investigate Vekua-type periodic operators of the form $Pu=Lu-Au-B\bar u$, where $L$ is a constant coefficient partial differential operator. We provide a complete characterization of the necessary and sufficient conditions for the solvability and global hypoellipticity of $P$. As an application, we provide a comprehensive characterization of Vekua-type operators associated with classical wave, heat, and Laplace equations.

Solvability of Vekua-type periodic operators and applications to classical equations

Kirilov, Alexandre
;
Tokoro, Pedro Meyer
2024-01-01

Abstract

In this note, we investigate Vekua-type periodic operators of the form $Pu=Lu-Au-B\bar u$, where $L$ is a constant coefficient partial differential operator. We provide a complete characterization of the necessary and sufficient conditions for the solvability and global hypoellipticity of $P$. As an application, we provide a comprehensive characterization of Vekua-type operators associated with classical wave, heat, and Laplace equations.
2024
35
3
434
442
https://www.sciencedirect.com/science/article/abs/pii/S0019357724000119?via=ihub
Vekua-type operators, solvability, global hypoellipticity, periodic solutions.
Kirilov, Alexandre; de Moraes, Wagner Augusto Almeida; Tokoro, Pedro Meyer
File in questo prodotto:
File Dimensione Formato  
2311.10683v2.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 155.98 kB
Formato Adobe PDF
155.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2101741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact