ERI and SSZ-13 were subjected to post-synthetic treatments (depending on the zeolite topology) to create micro-/mesoporous materials. The results in terms of NH3-SCR-DeNOx show that the applied treatments improved the catalytic activity of the Cu-containing ERI-based materials; however, the NO conversion did not vary for the different materials treated with NaOH or NaOH/HNO3. For the micro-/mesoporous Cu-containing SSZ-13, a lower NO conversion in NH3-SCR-DeNOx was observed. Thus, our findings challenge the current paradigm of enhanced activity of micro-/mesoporous catalysts in NH3-SCR-DeNOx. The modification of the supports results in the presence of different amounts and kinds of copper species (especially isolated Cu2+ and aggregated Cu species) in the case of ERI- and SSZ-13-based samples. The present copper species further differentiate the formation of reactive reaction intermediates. Our studies show that besides the μ-η2,η2-peroxo dicopper(II) complexes (verified by in situ DR UV-Vis spectroscopy), copper nitrates (evidenced by in situ FT-IR spectroscopy) also act as reactive intermediates in these catalytic systems.
Post-Synthetically Treated ERI and SSZ-13 Zeolites Modified with Copper as Catalysts for NH3-SCR-DeNOx
Deplano, Gabriele;Signorile, Matteo;Bordiga, Silvia;
2024-01-01
Abstract
ERI and SSZ-13 were subjected to post-synthetic treatments (depending on the zeolite topology) to create micro-/mesoporous materials. The results in terms of NH3-SCR-DeNOx show that the applied treatments improved the catalytic activity of the Cu-containing ERI-based materials; however, the NO conversion did not vary for the different materials treated with NaOH or NaOH/HNO3. For the micro-/mesoporous Cu-containing SSZ-13, a lower NO conversion in NH3-SCR-DeNOx was observed. Thus, our findings challenge the current paradigm of enhanced activity of micro-/mesoporous catalysts in NH3-SCR-DeNOx. The modification of the supports results in the presence of different amounts and kinds of copper species (especially isolated Cu2+ and aggregated Cu species) in the case of ERI- and SSZ-13-based samples. The present copper species further differentiate the formation of reactive reaction intermediates. Our studies show that besides the μ-η2,η2-peroxo dicopper(II) complexes (verified by in situ DR UV-Vis spectroscopy), copper nitrates (evidenced by in situ FT-IR spectroscopy) also act as reactive intermediates in these catalytic systems.| File | Dimensione | Formato | |
|---|---|---|---|
|
catalysts-14-00457-v2.pdf
Accesso aperto
Descrizione: Main text
Tipo di file:
PDF EDITORIALE
Dimensione
4.21 MB
Formato
Adobe PDF
|
4.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



