This paper presents new nonlinear quadratic and cubic spline quasi-interpolants for approximating piecewise smooth functions on nonuniform knot partitions. By incorporating WENO techniques in the quasi-interpolant definition, our method avoids Gibbs phenomenon near discontinuities while maintaining high-order accuracy in smooth regions. The construction extends previous research by considering nonuniform knot distributions, offering enhanced flexibility in function reconstruction. Numerical experiments validate the method’s superior performance compared to linear approaches.

Approximation of piecewise smooth functions by nonuniform nonlinear quadratic and cubic spline quasi-interpolants

Remogna, Sara
In corso di stampa

Abstract

This paper presents new nonlinear quadratic and cubic spline quasi-interpolants for approximating piecewise smooth functions on nonuniform knot partitions. By incorporating WENO techniques in the quasi-interpolant definition, our method avoids Gibbs phenomenon near discontinuities while maintaining high-order accuracy in smooth regions. The construction extends previous research by considering nonuniform knot distributions, offering enhanced flexibility in function reconstruction. Numerical experiments validate the method’s superior performance compared to linear approaches.
In corso di stampa
241
758
770
Piecewise smooth function; Spline quasi-interpolation; WENO
Aràndiga, Francesc; Remogna, Sara
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378475425004732-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2106015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact