KRAS is the most frequently mutated oncogene in cancer. Its activating mutations are associated with aggressive tumor behavior and resistance to certain therapies, including anti-EGFR treatments in colorectal cancer. In particular, the KRAS G12C mutation, which accounts for approximately 3–4% of colorectal cancers (CRCs) and 12–14% of non-small cell lung cancers (NSCLCs), involves a cysteine substitution at codon 12. This has provided the opportunity to develop selective covalent inhibitors that trap the mutant protein in its inactive state. The first targeted therapies for KRAS G12C-mutant cancers comprise sotorasib and adagrasib, both of which have been authorized for use in patients with previously treated NSCLC and CRC. Nevertheless, despite the evidence of clinical activity for this class of agents, primary and acquired resistance, dose optimization, and toxicity management remain significant open challenges. In this review, we summarize recent advances in KRASG12C tumor biology and pharmacological targeting. We also provide additional insights to guide future efforts to overcome the limitations of the current approaches and implement the treatment of KRASG12C-mutant cancers.
KRAS G12C Inhibition in Solid Tumors: Biological Breakthroughs, Clinical Evidence, and Open Challenges
Vitiello, Pietro Paolo;Valsecchi, Anna Amela;Duregon, Eleonora;Cassoni, Paola;Papotti, Mauro;Bardelli, Alberto;Di Maio, Massimo
2025-01-01
Abstract
KRAS is the most frequently mutated oncogene in cancer. Its activating mutations are associated with aggressive tumor behavior and resistance to certain therapies, including anti-EGFR treatments in colorectal cancer. In particular, the KRAS G12C mutation, which accounts for approximately 3–4% of colorectal cancers (CRCs) and 12–14% of non-small cell lung cancers (NSCLCs), involves a cysteine substitution at codon 12. This has provided the opportunity to develop selective covalent inhibitors that trap the mutant protein in its inactive state. The first targeted therapies for KRAS G12C-mutant cancers comprise sotorasib and adagrasib, both of which have been authorized for use in patients with previously treated NSCLC and CRC. Nevertheless, despite the evidence of clinical activity for this class of agents, primary and acquired resistance, dose optimization, and toxicity management remain significant open challenges. In this review, we summarize recent advances in KRASG12C tumor biology and pharmacological targeting. We also provide additional insights to guide future efforts to overcome the limitations of the current approaches and implement the treatment of KRASG12C-mutant cancers.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025-KRAS.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



